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Abstract

Association Rule Discovery is an approach to mining rules from data in a database. Often,
the database is a database of transactions. The rules generated will consist of strong
associations between items within the database. An initial support constraint is applied to
items to generate Association Rules. Further constraints, such as confidence, can be applied
to the rules to generate interesting rules.

Generalized Rule Discovery (GRD) is an alternative rule discovery method to association
rule discovery. GRD and association rule discovery share several features. GRD allows
the user to specify constraints to generate rules without the need to specify the support
constraint. An additional feature of GRD is that it generates n rules (user specified) that
maximize a search measure. GRD uses Optimized Pruning for Unordered Search (OPUS)
algorithm as its search method, which is an effective method for searching large unordered
search spaces (space of rules in rule discovery). Using the association rule discovery approach
to mine negative rules has been given some attention. Similarly, the GRD approach can
be used to mine negative rules. By applying the Tidsets/Diffsets technique it is possible
mining negative rules effectively and efficiently.

Implementing negative rules using GRD provides interesting results. The search space to
explore can be very large for positive rules. In addition to positive rules, searching for
negative rules increases the search space exponentially. Therefore, the execution times for
the new system on all datasets are longer than the original system. The solution derived
from the new system always contained some proportion of negative rules. The solution
for some datasets only contained negative rules, as a result the execution time for these
datasets are a lot longer on the new system.
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Chapter 1

Introduction

1.1 Rule Discovery and Classification Learning

The aim of Rule Discovery techniques is to identify rules between items of a database. Rule
discovery approaches that have developed are Classification Rule Discovery and Association
Rule Discovery.

Classification rules are rules developed from a database that attempt to classify the data
within the database. Association rules contrast with classification rules by attempting
to identify unexpected regularities between items of the database. Transactional data is
usually the data from which association rules are developed. Generalized Rule Discovery is
an alternative approach to developing association rules.

Classification Learning is the process of assigning data items from a database into groups
known as classes. The classification process can be either unsupervised or supervised clas-
sification. In unsupervised classification, a sample from the database is used to develop a
model for the data items. Classes along with attribute values are generated as a part of the
classification process. Each data item from the sample belongs to a class.

From unsupervised classification a model is developed. In supervised classification, each
data item from the database has a class associated with itself. From the known classification
for the data items a description for each class is found [11]. Decision Trees and Decision
Graphs [22] are commonly used to describe classification or a class structure.

Classification learning is different from rule discovery as it focuses on classifying data in
a database by creating classes for the data or testing to see if the data for a given class
structure fits the class structure. Rule discovery has a different objective as it tries to
develop rules that describe the inter-relationship between the data items from the database.
Rule discovery when applied to large datasets has proved to perform well by successfully
identifying unexpected interesting rules [1].
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The objective and aim of this research project is to identify negative correlations in large
databases using the GRD approach and to determine if generating the negative rules are
feasible. Some rules developed by the GRD system are likely to be spurious and will result
in Type 1 error [5]. Type 1 error can be minimized using statistical tests [9, 4, 12]. Filters
to remove spurious rules can be applied to remove rules that are statistically insignificant.
Generating these rules is not computationally infeasible as eliminating them is a simple
post-process. Testing rules for Type 1 error is beyond the scope of this research project.

1.2 Significance and Research Method

The GRD approach will be used to investigate mining negative rules in large databases.
GRD is chosen for two main reasons. The first reason is that it allows users to generate
rules from itemsets without the need to specify the initial support constraint. Several rules
which are useful to a user may satisfy other constraints such as confidence. The second
reason is that GRD also has the option to generate a specific number of rules. A search
measure such as leverage is specified and the rules with highest leverage will be developed.

The GRD system is modified to generate negative rules. The changes made to the system
are to modify the algorithm it uses and to modify the current rule data structure. The are
several other changes made to the system which are not discussed in detail.

1.3 Structure of Thesis

The thesis is organized as follows. The Literature Review (Chapter 2) discusses the relevant
rule discovery approaches, negative rules and database formats including tidsets and diffsets.
The Literature Review is followed by a Research Proposal (Chapter 3) which discusses the
aims and objectives of the research conducted as well as its significance.

Chapter 4, the Methodology Chapter, discusses the research methods used to implement the
modified GRD system, GRDI. The next chapter, Analysis of Experiment Results (Chap-
ter 5), looks at the implications of the results derived from experiments conducted on the
datasets with both systems.

The conclusion of the thesis follows in Chapter 6 with a discussion of the limitations of the
new system and the possibilities for future work.

1.4 Conclusion

The introduction provides a brief description of previous work related to the thesis topic.
Some aspects of Rule Discovery and Classification Learning are discussed and compared.
The significance of the research undertaken is discussed along with the methods that are
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going to be adopted to implement the new system. The GRD approach will be used to
develop negative rules. An outline of the topics presented in the thesis is also provided.
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Chapter 2

Literature Review

2.1 Introduction

Rule discovery involves searching through a space of rules to determine rules of interest
to a user. The rules are usually developed from very large databases. From these rules
interesting rules are chosen by a user.

Association rule discovery aims to find rules between frequent items in a dataset. From the
dataset, frequent items (literals which satisfy a minimum support constraint) are used to
generate rules. These rules (the rule set) can then be pruned by using further constraints
defined by the user. The final set of rules developed are said to be interesting rules to the
user of the system. Association rule discovery and the terminology associated with it are
described in Section 2.2. Some implementations of association rule discovery systems are
also discussed.

Generalized Rule Discovery is an alternative rule discovery approach. The rules in GRD
are developed based on user defined constraints. The support constraint need not apply to
rules which are generated by GRD. This allows for rules to be generated based on several
possible constraints including minimum support. GRD also allows users to specify the
number of rules to be generated. GRD optimizes the search measure of the rules generated.
A discussion of GRD is presented in detail in Section 2.3.

Mining negative rules from databases has proved to be useful. Using association rule dis-
covery to mine negative rules has been previously researched. Some of the ways in which
negative rules are mined are presented in Section 4.4.

To mine negative rules the diffsets technique proves useful by providing the means for
calculating complement sets for itemsets efficiently. Database representations including
tidsets and diffsets are discussed in Section 4.5.
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2.2 Association Rule Discovery

Association rule discovery aims to find rules with strong associations between items from the
database. It focuses on detecting relationships between the items [29]. Mining association
rules in large databases was first approached by Agrawal, Imielinski and Swami [2]. A
database of transactions is the database from which rules are generated.

A rule is of the form A ⇒ B where A is known as the antecedent and B is the consequent
of the rule. Both A and B are itemsets from the database of transactions. An itemset can
be a single item (Example: water) or a set of items (Example: water and chips). The rule
implies that if an itemset A occurs in a transaction then itemset B is likely to occur in the
same transaction of the database.

The search space of rules generated from the database can also be very large, therefore to
mine association rules from the database, constraints are defined [20]. For example, 1000
items in the database have 21000 possible combinations of itemsets which results in a large
number of rules to explore. The minimum support constraint is used to limit the number
of itemsets that can be considered for rules to be generated.

The support of an itemset is the frequency with which the itemset occurs in the database.
For example, if 25 transactions out of 100 transactions (assuming that a set from the
database consists of 100 transactions) contain Pepsi, then the support of Pepsi is 0.25. The
itemsets which satisfy the minimum support constraint are frequent itemsets. From these
itemsets the rules are developed. If the minimum support is defined as 0.2 by the user, then
Pepsi is a frequent item in the previous example as support (Pepsi) ≥ minimum support.

For example, consider the rule pepsi ⇒ chips.

• Support (pepsi) = 0.4, implies that 40 percent of all customer transactions contain
pepsi.

• Support (pepsi ⇒ chips) = 0.2 implies that 20 percent of all customer transactions
contain pepsi and chips together. [24]

From the rule set that is developed the user can choose to apply further constraints. The
result is several rules will be pruned form the space of rules. Confidence is usually the
measure of interest for generating association rules in association rule discovery. The final
set of rules are referred to as interesting rules to the user. Some measures of interest which
the user can specify are:

1. Confidence (A ⇒ B) = support (A ⇒ B) ÷ support (A)

2. Lift (A ⇒ B) = support (A ⇒ B) ÷ (support (A) × support (B))

3. Leverage (A ⇒ B) = support (A ⇒ B) - (support (A) × support (B))

Discovering association rules is a three part process:
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1. Search the data space to find all the itemsets (can be a single item) whose support
is greater than the user specified minimum support. These itemsets are the frequent
itemsets.

2. Generate interesting rules based on the frequent itemsets. A rule is said to be inter-
esting if its confidence is above a user’s specified minimum confidence.

3. Remove (prune) all rules which are not interesting from the rule set. [19]

Further constraints can be applied to generate rules specific to a user’s needs after the
three part process is complete. Therefore interesting rules satisfy the minimum support
constraint and any additional constraint defined by the user in association rule discovery.

Generating frequent itemsets is the part which requires high computation and needs to be
efficient. When a database contains thousands of transactions, computing frequent itemsets
can take a lot of time. Therefore, most research related to association rule discovery has
been conducted to improve the frequent itemsets generation process. Specifically, most
attention has been given to improve part one of the three part process.

Zaki et al. [34] show that developing association rules using samples from the dataset
improves the speed of the mining process. The samples which are relatively small can be
stored in main memory. Therefore the I/O overheads of multiple scans of the dataset, which
are usually high, are reduced.

There are several algorithms which have been developed to mine association rules quickly.
Some of them are described in the following sections.

2.2.1 Apriori

The Apriori algorithm was proposed by Agrawal and Srikant [3]. The algorithm has proved
to be an efficient algorithm for mining association rules and has become the standard
algorithm used for association rule discovery. Apriori follows a two step process to generate
rules:

• The first step is to find all frequent itemsets. The itemset frequency information (sup-
port) is maintained. This step will limit the number of itemsets which are considered
for the antecedent and consequent of the rules.

• From these frequent itemsets, association rules are generated.

All the items in the database are tested for minimum support. The frequent 1-itemsets
found, known as a seed set, can be used to construct a candidate set of itemsets [3]. Sets
with k - 1 items which are frequent can be joined to construct candidate sets with k items.
Then the candidate set (k itemset) is tested to see if it satisfies minimum support and if it
does it becomes a seed for the next pass. This iterative process continues until no frequent
itemsets are found.
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Some variants of the Apriori approach have showed that very few passes through the
database may be necessary to generate association rules [16], [24]. An efficient imple-
mentation of the Apriori algorithm by Borgelt is Apriori [7].

2.2.2 Other Algorithms and Search Methods

There have been several algorithms proposed to solve the task of generating frequent item-
sets efficiently. They include [16], [35], [14].

The Partition Algorithm

Savasere, Omiecinski and Navathe [16] proposed an efficient algorithm for mining association
rules. The algorithm is known as the Partition Algorithm and works as follows. The
algorithm scans the database twice. In the first scan the algorithm identifies a set of
the potentially frequent itemsets. The set generated is a superset of all possible frequent
itemsets and possibly some which are not. The second scan is then used to measure the
support of each frequent itemset.

The partition algorithm experimentally has proved to be more efficient than the Apriori
algorithm for large databases.

A Cluster-based Approach

Zaki, Parthasarathy, Ogihara and Li [35] presented six different algorithms. The algorithms
employ three main techniques.

• Cluster the itemsets using equivalence classes or maximal hypergraph cliques - this
will obtain potential frequent itemsets.

• From each cluster sublattice the true frequent itemsets are obtained using bottom-up,
top-down or hybrid lattice traversal.

• Two different database layouts are considered - Horizontal layout and the Vertical
layout (Discussed in Section 2.5).

For small databases, Apriori outperforms some of the proposed algorithms, but as the
database gets large all six algorithms outperform Apriori.

Direct Hashing and Pruning Algorithm

Park, Chen and Yu [14] have proposed a Direct Hashing and Pruning (DHP) algorithm.
The algorithm has two main features: it speeds up the frequent itemset generation process
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and reduces the transaction database size. The algorithm uses the hashing technique to
filter out itemsets that cannot be used for the next candidate set generation. All candidate
itemsets are inserted into a Hash Table after pruning the search space of rules. Each bucket
in the hash table contains a number to represent the number of itemsets in the bucket so
far.

DHP trims each transaction to reduce the transactions size. In addition DHP also prunes
transactions from the database. For large databases, DHP has proved to be faster than
Apriori.

2.3 Generalized Rule Discovery

Generalized Rule Discovery (GRD) was developed by Webb and Zhang [30]. Webb [27]
argues that for some applications a direct search may be more effective than the two part
process of the Apriori algorithm. The algorithm presented maintains the data in memory
from which the association rules can be generated using alternative constraints defined by
a user. This algorithm was the basis for the GRD approach.

GRD’s aims are very similar to that of association rule discovery. As with association rule
discovery, GRD searches through the database to generates rules. The rules are generated
based on constraints specified by a user. However, unlike association rule discovery, the
initial support constraint to generate frequent itemsets is not used by GRD.

In some applications minimum support may not be a relevant criterion to generate rules. For
example, if a user wanted interesting rules with the highest leverage, then with association
rule discovery the minimum support constraint will first be applied to get the frequent
itemsets. Some rules which have very high leverage may not be considered as itemsets
within the rules may not be frequent. As a result several interesting rules may not be
developed.

The advantage of GRD approach is that it develops rules based on alternative constraints
defined by the user [30]. The rules can be generated based on minimum support, but it
is not an essential criterion for generating rules. Other constraints to generate interesting
rules include minimum confidence, minimum leverage, and minimum lift. An additional
constraint the user can specify is a specific number to be generated, n rules. The user
also specifies a search measure and the rules generated by GRD will maximize this search
measure. For example, a user specifies that 100 rules are to be generated with leverage as
the search measure. GRD will then generate the 100 rules with maximum leverage.

The GRD approach has been implemented in the GRD program. The GRD program and
the search algorithm it implements are described below.
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2.3.1 The GRD System

The GRD System was developed by Webb and Zhang [30]. The data fed into the GRD
system includes a header file with information about the data and the data file with all the
transactions. The user then specifies all the constraints, the number of rules to be generated,
the number of cases in the database and the number of items for the antecedent. Then the
rules from the database will be generated and displayed with their statistics for support,
etc. An example output of the GRD program is available in Appendix B.1. The GRD
system has proved to be successful by efficiently rules with the highest possible leverage
[30].

An example input: associations <header file> <data file> -number-of-cases=5822
-minimum-strength=0.8 -minimum-support=0.01 -max-number-of-associations=1000
-maximum-LHS-size=4 -search-by-measure=leverage.

Associations is the name of the executable file. The header file contains information about
the data, and all the data is contained in the data file. The -number-of-cases=5822 are
the total number of cases from the data file which will be searched to generate the rules.
-minimum-strength=0.8 and -minimum-supports=0.01 are the constraints applied to gen-
erate the rules. -max-number-of-associations=1000 and -search-by-measure=leverage limits
GRD to finding 1000 associations with highest leverage. -maximum-LHS-size=4 specifies
that the antecedent can comprise one to four items only.

2.3.2 OPUS Search Algorithm

The search space can often be very complex. For such a search space, previous methods
employed a Heuristic Search [15, 26]. However, this search method does not necessarily find
its target. Heuristic algorithms may also introduce a bias.

The algorithm used by GRD is the Optimized Pruning for Unordered Search (OPUS) algo-
rithm developed by Webb [26]. This algorithm can be used for classification rule discovery
and was originally developed for that purpose. It is an algorithm that guarantees to find
the target it seeks.

The OPUS algorithm is an efficient search method that prunes parts of the search space
that will not result in interesting rules [28, 30]. Once an itemset is known not to be in
the solution the search space is restructured (pruned). Restructuring the search space
and pruning uninteresting rules allows very fast access to rules which satisfy the minimum
constraints.

Consider the search space in Figure 2.1. If it is determined that (b) is not a frequent
itemset then all the supersets of (b) can be pruned from the search space (see Figure 2.2).
This pruning method almost halves the search space below the itemset in the search space.
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|–(a)
()–|–(b)—(a,b)
|–(c)–|–(a,c)

|–(b,c)

Figure 2.1: Sample search space

|–(a)
()–|–(b)— X
|–(c)–|–(a,c)

|–X

Figure 2.2: Pruning all nodes containing itemset (b)

Previous algorithms [13] pruned the search space under a particular itemset only (see Fig-
ure 2.3). Toivonen, et al. [23] have explored pruning using rule covers.

A commercial system that implements a variant of the OPUS algorithm is Magnum OPUS
[25]. It develops rules that need not be based on the frequent itemsets and therefore differs
from association rule discovery systems. The OPUS AR algorithm [26] is used to develop
the rules. An example of an adaptation of the OPUS algorithm is the Brute algorithm [18].

2.4 Mining Negative Rules

The main interest in association rule discovery has been to mine rules with strong associ-
ations. Such associations are known as positive associations. Finding positive associations

|–(a)
()–|–(b)— X
|–(c)–|–(a,c)

|–(b,c)

Figure 2.3: Pruning a branch of the search space
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is useful to make predictions about the database. For example, if the database contains
transactions at a supermarket, predictions through positive associations can be used by the
manager at the supermarket to improve their sales.

Mining negative rules has been given some attention and has proved to be useful. Brin,
Motwani and Silverstein [8] first talked about mining negative associations between two
itemsets. Savasere, Omiecinski and Navathe [17] use the method of generating positive
rules from which negative rules are mined. The result is that there are fewer but more
interesting negative rules that are mined.

Negative association rules are associations rules between the antecedent and consequent of
the rule. Either the antecedent or consequent or both have to be negated in order for the
rule to be a negative rule.

Assume that A and B are Itemsets. B is a single Itemset. Then the rules to be mined can
be of the form:

1. A ⇒ B (A implies B, as used in association rules)

2. A ⇒ ¬ B (A implies not B)

3. ¬ A ⇒ B (not A implies B)

4. ¬ A ⇒ ¬ B (not A implies not B) [31]

The rules above specify concrete relationships between each itemset compared to [17] who
look at the rule A ⇒̄ B.

In the rules specified above, either the antecedent or the consequent or both of them are
negated. Another possibility is to consider itemsets within the antecedent or the consequent
being negated. However, the GRD approach limits the consequent to a single condition.
The rules to be considered are listed below. The second and third rules listed will not be
explored as there is more than one condition in the consequent.

1. (¬ A ∧ B) ⇒ C

2. A ⇒ (¬ C ∧ D)

3. (¬ A ∧ B) ⇒ (¬ C ∧ D)

A large number of negative rules can be generated from the database with thousands of
transactions. Most of these rules may not be of interest to a user. Therefore constraints will
have to be applied to negative rules as they are applied to positive rules in association rule
discovery and generalized rule discovery. An example of useful negative rules: “60 percent
of customers who buy Potato Chips do not buy bottled water” [17]. This information can
be used by the manager of a store to improve the store’s marketing strategy [17].
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Transaction 1: Itemset A Itemset B Itemset C
Transaction 2: Itemset A Itemset D
Transaction 3: Itemset A Itemset B Itemset C Itemset D

Table 2.1: Horizontal Mining: each transaction is stored with items that occur in it

Itemset A: Itemset B: Itemset C: Itemset D:
Transaction 1 Transaction 1 Transaction 1
Transaction 2 Transaction 2
Transaction 3 Transaction 3 Transaction 3 Transaction 3

Table 2.2: Vertical Mining for a given Class

2.5 Tidsets and Diffsets

Some datasets that are used to mine rules from are very large. To be able to mine rules
efficiently the data needs to be presented in a manner so that it can be analyzed quickly.
Models for storing large amounts of data so that they can be efficiently read are discussed
by Zaiane and Han [32] and Srivastava, et al. [21].

In a database of transactions, each transaction has items associated with it. The trans-
actions can be stored Horizontally (see Table 2.1) or Vertically (see Table 2.2). Vertical
mining has proved to be more efficient than Horizontal mining.

Vertical mining has outperformed horizontal mining as it supports fast frequency counting
on tidsets [33]. This is because data that are not necessary are automatically pruned and
transaction frequencies can be calculated quickly to satisfy the minimum support constraint.

The transaction set that belongs to an itemset is known as a Tidset. A reference tidset
is defined for a set of items. Zaki and Gouda [33] define a reference tidset as a class.
Please note this special use of the term class in the definitions, below. A class has a set
of transactions associated with itself. For example, the class items may occur in say three
transactions (1, 2, and 3) out of total number of transactions, say a hundred. Each itemset
is stored with the transactions it is contained in for a particular class (Example: 1, and 3).
The transaction sets for the itemsets in this example can be seen in Table 2.2, itemsets B
and C occur in transactions 1 and 3.

The tidset for a class is known as a prefix tidset or a superset. The itemsets from within the
class are tested to see if they satisfy a minimum support constraint. Those itemsets that
do not are omitted as they are considered infrequent. The itemsets that are frequent will
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Itemset A: Itemset B: Itemset C: Itemset D:
Transaction 1

Transaction 2 Transaction 2

Table 2.3: Diffsets for itemsets in Table 2.2

occur in most of the transactions from the class that they are part of. From Table 2.2 it
can be seen that each itemset is in at least two out of three transactions.

Zaki and Gouda [33] proposed that each itemset should be stored with their diffsets rather
than their tidsets in the class that the tidset appears in. A diffset is a set of transactions
that an itemset does not occur in within a given class. Since the itemsets are frequent
within the class, the size of the tidset for the itemset is likely to be large, that is most of the
transactions in the class. Therefore, the size of the diffset for an itemset is much smaller.
The same information is contained in both representations and the diffsets approach results
in saving a lot of memory.

From Table 2.3 it can be seen that for the same given class in Table 2.2 the size of the
diffset representation is a lot smaller than that of the tidset representation. GRD calculates
the tidset for an itemset from the database. This information is stored in memory when
developing association rules.

2.6 Conclusion

Techniques to mine rules from large databases include Association Rule Discovery and
Generalized Rule Discovery. Both association rule discovery and GRD attempt to find
rules with strong associations between items in the database.

The first step in association rule discovery is to search through the database and find
frequent itemsets. The frequent itemsets are used to generate a space of rules. From the
space of rules, rules which do not meet constraints specified by the user are pruned. The
GRD approach is different from association rule discovery as it develops rules from itemsets
based on alternative constraints defined by the user, not necessarily the frequency of an
itemset. GRD also has the option to generate a particular number of rules that maximize
a search measure.

Mining negative rules in databases has been given some attention using the association rule
discovery approach. Negative rules are rules where the antecedent or consequent or both
are negative. These rules can be mined from the database using the GRD approach. The
GRD approach will allow a user to specify the number of rules and generate rules based on
alternative constraints. Rules that are developed can then be assessed for usefulness.
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All itemsets in transactional data are stored with their corresponding transaction sets (tid-
sets). A diffset is the tidset for the negation of an itemset. Using this information, the
negation of itemsets can be calculated with very little additional computation. Similarly,
the details for a negative rule, such as support and confidence, can be calculated quickly.

GRD currently calculates the tidsets for the itemset in the database. Using the GRD
approach with the tidsets/diffsets technique, it is possible to mine positive rules and negative
rules that satisfy user specified constraints effectively.
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Chapter 3

Research Proposal

3.1 Significance of Research

Previous work related to mining negative rules in databases was done by Savasere, et al.
[17] and Wu, et al. [31] using association rule discovery. In large databases, several itemsets
may not satisfy the minimum support constraint. However, rules with these infrequent
itemsets may prove to be interesting.

For example, an association between vodka and caviar may be of interest in market basket
analysis. Since both vodka and caviar are infrequently bought they would not be discov-
ered by an association rule discovery system. The rule Vodka ⇒ Caviar might have high
confidence and therefore be interesting to a user. Since GRD allows rules to be generated
based on minimum constraints defined by the user, the user can define a minimum confi-
dence value as the constraint. If Vodka ⇒ Caviar satisfies the confidence constraint, then
the GRD system generates this rule along with all other interesting rules which satisfy this
constraint.

Using GRD to generate negative rules allows the user to view positive and negative associ-
ations between rules. Negative correlations within a database may be of interest to users.
GRD also allows a user to generate a particular number of rules with the highest value of
a specified search measure. The user can then search the rule space for interesting rules by
defining further constraints.

3.2 Research Objective

The objective of this project is to develop negative rules using the GRD approach. The
original GRD system was developed by Webb and Zhang [30]. GRD is chosen to implement
the project as the minimum support constraint need not be applied to develop the rules.
The aim of this project is to determine whether or not the solution developed with positive
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and negative rules is computationally tractable. The aim and objective are achieved by
modifying the GRD system to generate negative rules and comparing the modified system
with the original system. If a constraint on the number of rules is placed it is possible that
a major number of rules generated are negative. The rules generated, positive and negative
will be those rules with the highest value of the search measure.

3.3 Conclusion

GRD is the approach chosen to mine negative rules from large databases. Mining negative
rules from databases using association rule discovery has been approached by Savasere, et
al. [17] and Wu, et al. [31]. The reason GRD is chosen is that it allows a user to mine rules
irrespective of the frequency of the itemsets within the dataset. An additional advantage
is that only n rules that maximize a search measure are generated. This constraint allows
the user to compare rules with the highest value of the search measure.

The research methods used to develop negative rules using GRD are described in Chapter
4 which follows next.



17

Chapter 4

Methodology

4.1 Introduction

The GRD approach will be used to develop negative rules from the database. Using asso-
ciation rule discovery to develop negative rules has been given some attention [8, 17, 31].
The main reasons for using the GRD approach are so that the minimum support constraint
need not apply and the number of rules to be generated can be limited to a fixed number.

The core of the search for association rules lies with the OPUS search function. To developed
association rules the OPUS algorithm is modified from the OPUS algorithm proposed by
Webb [26]. To implement negative rules, there are further changes to be made to the OPUS
algorithm. The OPUS algorithms are discussed in Chapter 2.

A rule’s data structure consists of a left-hand-side (LHS) set and right-hand-side (RHS)
set. A second LHS set is added to the rule’s data structure which holds the set of negative
antecedents for the rule. Since the RHS of a rule is limited to a single consequent, a flag
within the rule is sufficient to indicate whether the consequent of a rule is negative or not.
Section 4.3 addresses both rule data structures in detail.

To implement negative rules, the OPUS algorithm is modified and the rule’s data structure
changes. The GRD system calculates transaction sets for all available itemsets. Since a
rule can include a negative set of antecedents, the tidsets for the negative items need to
be calculated. This is done using the diffsets approach. The negative consequent does not
require calculations for tidsets and diffsets as negative consequent sets are never needed.
The calculations are explained in Section 4.4.
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4.2 Modifying the GRD Algorithm

4.2.1 The GRD Algorithm

The GRD algorithm is a modified version of the OPUS search algorithm. OPUS aims at
searching through the space of subsets of a dataset, whereas GRD aims to search through
the space of pairs of antecedent conditions and consequent conditions. GRD performs
the OPUS search for all potential antecedents and for each antecedent (could be a set of
conditions) the set of consequent conditions are explored. The consequent conditions are
limited to single condition to simplify the search.

User defined constraints determine which rules are part of the solution. The constraints
include support, confidence, etc. and are used to prune the search space. GRD also allows
the user to specify a particular number of rules which maximize a search measure. The
solution will contain a maximum number of rules as specified by the user.

Webb and Zhang [30] define the Generalized Rule Discovery task or GRDtask by 4-tuple
<A, C, D, M> and rules are of the form X ⇒ Y.

• A: is the set of antecedent conditions, A is nonempty.

• C : is the set of consequent conditions, C is nonempty.

• D : is the set of records, where d ∈ D, conditions(d) are the set of conditions that are
applied to d and conditions(d) ⊆ A ∪ C. D is nonempty.

• M : is the set of constraints that result in the solution to the GRD task.

• X : is the set of antecedent conditions, X is nonempty.

• Y : is the set of consequent conditions, Y is nonempty.

The solution <A, C, D, M> → X ⇒ Y is a many-to-one function mapping a GRDtask to
its solution, satisfying solution(<A, C, D, M>) = {X ⇒ Y | X ⊆ A ∧ Y ⊆ C ∧ X ⇒ Y
satisfies all constraints in M with respect to D}.
The GRD algorithm is a recursive function with three parameters. The three parameters
are:

• CurrentLHS: the set of conditions that are currently considered for the antecedent of
the rule. CurrentLHS is initialized to ∅.

• AvailableLHS: the set of conditions that may be added to the antecedent of the rule.
AvailableLHS is initialized to A (antecedent conditions).

• AvailableRHS: the set of conditions that could be the consequent of the rule. Avail-
ableRHS is initialized to C (consequent conditions).
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A global variable, currentSolution consists of the set of rules that are part of the solution
so far, which is initialized to 0. The GRD algorithm starts with a single condition in the
antecedent. Further conditions are added to the antecedent as the algorithm tries to deter-
mine possible rules. From AvailableLHS, antecedent conditions are added to CurrentLHS
to form NewLHS. Each available condition in AvalilableRHS is tested with NewLHS to
determine whether the rule NewLHS ⇒ c can be in the solution. At this stage a recur-
sive call is made to the GRD function with NewLHS, NewAvailableLHS (created pruning
AvailableLHS) and NewAvailableRHS (created pruning AvailableRHS) as the parameters.

The solution contains rules with the maximum value of the search measure. Line 13 of the
algorithm in Figure 4.1 removes a rule if the number of rules exceeds MaxRules (specified
by user). The rule that is removed is the rule which is MaxRules + 1. This will be the
rule with the lowest value of the search measure. The pruning sections of the algorithm
are omitted. To see the complete algorithm with pruning, refer to [30]. Positive aoociation
rules are generated with this algorithm.

GRD (CurrentLHS, AvailableLHS, AvailableRHS)
1 : SoFar = ∅
2 : for all P in AvailableLHS do
3 : NewLHS = CurrentLHS ∪ P
4 : NewAvailableLHS = SoFar
5 : If P in AvailableLHS then
6 : NewAvailableRHS = AvailableRHS - P
7 : else
8 : NewAvailableRHS = AvailableRHS
9 : end if
10: for all Q in NewAvailableRHS do
11: if insolution (NewLHS ⇒ Q, <A, C, D, M ∧ X ⇒ Y ∈

currentSolution U {NewLHS ⇒ Q}>) then
12: add NewLHS ⇒ Q to currentSolution
13: remove from currentSolution any rule W ⇒ Z: ¬ insolution (W ⇒ Z,

<A, C, D, M ∧ X ⇒ Y ∈ currentSolution U {NewLHS ⇒ Q}>)
14: end if
15: end for
16: if NewAvailableLHS != 0 and NewAvailableRHS != 0 then
17: GRD (NewLHS , NewAvailableLHS, NewAvailableRHS)
18: end if
19: SoFar = SoFar ∪ (P)
20: end for

Figure 4.1: The GRD algorithm, [30]
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GRDI (CurrentLHS, AvailableLHS, AvailableRHS, AvailNegLHS, AvailNegRHS)
1 : SoFar = ∅
2 : for all P in AvailableLHS do
3 : CreateRules (P, AvailableRHS, AvailNegRHS, AvailableLHS,

NewLHS, NewAvailableLHS, NewAvailableRHS, NewAvailNegRHS, SoFar)
4 : if NewAvailableLHS != 0 and NewAvailableRHS != 0 then
5 : GRD (NewLHS , NewAvailableLHS, NewAvailableRHS,

NewAvailNegLHS, NewAvailNegRHS)
6 : end if
7 : SoFar = SoFar ∪ (P)
8 : end for
9 : for P in AvailNegLHS do
10: CreateRules (P, AvailableRHS, AvailNegRHS, AvailNegLHS,

NewLHS, NewAvailNegLHS, NewAvailableRHS, NewAvailNegRHS, SoFar)
11: if NewAvailNegLHS != 0 and NewAvailableRHS != 0 then
12: GRD (NewLHS , NewAvailableLHS, NewAvailableRHS,

NewAvailNegLHS, NewAvailNegRHS)
13: end if
14: SoFar = SoFar ∪ (P)
15: end for

CreateRules (P, AvailableRHS, AvailNegRHS, AvailableLHS, NewLHS,
NewAvailableLHS, NewAvailableRHS, NewAvailNegRHS, SoFar)
1 : NewLHS = CurrentLHS ∪ P
2 : NewAvailableLHS = SoFar
3 : If P in AvailableLHS then
4 : NewAvailableRHS = AvailableRHS - P
5 : NewAvailNegRHS = AvailNegRHS - P
6 : else
7 : NewAvailableRHS = AvailableRHS
8 : NewAvailNegRHS = AvailNegRHS
9 : end if
10: for all Q in NewAvailableRHS do
11: if insolution (NewLHS ⇒ Q, <A, C, D, M ∧ X ⇒ Y ∈

currentSolution U {NewLHS ⇒ Q}>) then
12: add NewLHS ⇒ Q to currentSolution
13: remove from currentSolution any rule W ⇒ Z: ¬ insolution (W ⇒ Z,

<A, C, D, M ∧ X ⇒ Y ∈ currentSolution U {NewLHS ⇒ Q}>)
14: end if
15: end for
16: for all Q in NewAvailNegRHS do
17: if insolution (NewLHS ⇒ Q, <A, C, D, M ∧ X ⇒ Y ∈

currentSolution U {NewLHS ⇒ Q}>) then
18: add NewLHS ⇒ Q to currentSolution
19: remove from currentSolution any rule W ⇒ Z: ¬ insolution (W ⇒ Z,
20: <A, C, D, M ∧ X ⇒ Y ∈ currentSolution U {NewLHS ⇒ Q}>)
21: end if
22: end for

Figure 4.2: The modified GRD algorithm and the CreateRules function
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4.2.2 The Modified GRD Algorithm

The new algorithm to implement negative rules includes two additional input sets to the
GRD function. The two sets are AvailNegLHS (negative antecedent set) and AvailNegRHS
(negative consequent set).

Each condition in the positive antecedent set (AvailableLHS) is added to CurrentLHS to
form NewLHS. For each condition in AvailableRHS, the rules of the form NewLHS ⇒ c are
explored and for each condition in AvailNegRHS, the rules NewLHS ⇒ ¬c are explored.
Similarly, each condition from the negative antecedent (AvailNegLHS) set is tested with
positive and negative consequent conditions from AvailableRHS and AvailNegRHS respec-
tively. The algorithm to implement positive and negative rules is presented in Figure 4.2.

The additional procedure CreateRules can also be viewed in Figure 4.2. The parameters
passed to CreateRules are listed below. Along with the parameters either (val) or (ref)
are listed, which means that that particular parameter was called by value or reference
respectively.

• P (val): is the current antecedent condition to be added to NewLHS.

• AvailableRHS (val): is the set of available conditions for the positive consequent.

• AvailNegRHS (val): is the set of available conditions for the negative consequent.

• AvailableLHS (val): is the set of available conditions for the antecedent. Depending
on where the call was made from, AvailableLHS can be a positive set or a negative
set.

• NewLHS (ref): is the new antecedent set which is the intersection of the current
antecedent set, CurrentLHS, and the new antecedent condition, P.

• NewAvailableLHS (ref): is the new available antecedent set, which is set to SoFar.

• NewAvailNegLHS (ref): is the new available negative antecedent set, which is set to
SoFar.

• NewAvailableRHS (ref): is the new available positive consequent set.

• NewAvailNegRHS (ref): is the new available negative consequent set.

• SoFar (val): is the set of antecedent conditions observed so far.

If A, B are antecedent conditions and C is a consequent condition, then the rules that will
be explored are of the form:

1. A ∧ B ⇒ C

2. A ∧ B ⇒ ¬C
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3. A ∧ ¬B ⇒ C

4. A ∧ ¬B ⇒ ¬C

5. ¬A ∧ B ⇒ C

6. ¬A ∧ B ⇒ ¬C

7. ¬A ∧ ¬B ⇒ C

8. ¬A ∧ ¬B ⇒ ¬C

Rules that satisfy the constraints are added to currentSolution. The rule with the lowest
value of the search measure is removed from the solution if the number of rules exceeds
MaxRules.

4.3 Modifying the Rule Data Structure

4.3.1 The GRD Rule Data Structure

A rule that is to be added to currentSolution has a data structure as presented in Figure 4.3.
The data structure includes a pointer to the next rule which effectively creates a rule list
for currentSolution. The number of cases covered by the rule is the number of cases covered
by the antecedent of the rule. This information is used to calculate the coverage (support
of antecedent) of the rule, e.g. rule → coverage = rule → no of cases covered ÷ total cases.
The rule also has float values for strength (confidence), support, lift and leverage. All these
statistics can be calculated using the support for the antecedent and the consequent of
the rule. There are two sets included in the data structure, An set is the set of positive
antecedents and Con set is a single set for the consequent. If A is the antecedent and C is
the consequent then the statistics can be calculated as follows:

• Strength (A ⇒ C) = support (A ⇒ C) ÷ support (A)

• Lift (A ⇒ C) = support (A ⇒ C) ÷ (support (A) × support (C))

• Leverage (A ⇒ C) = support (A ⇒ C) - (support (A) × support (C))

4.3.2 The Modified Rule Data Structure

The modified data structure for a rule includes a negative antecedent set, negAn set. The
positive antecedent set is posAn set labelled differently from the rule data structure in
Figure 4.3. Negative consequents do not need an additional set as they can be stored in
the same set for the positive consequents and the flag neg con is used to determine whether
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RULE TYPE:

RULE TYPE *next; /* Pointer to next rule in list */
int no of cases covered; /* Cases covered by antecedent of rule */
float coverage; /* Coverage of rule (Support (antecedent)) */
float strength; /* Strength of rule (Confidence of rule) */
float support; /* Support of the rule */
float lift; /* Lift of the rule */
float leverage; /* Leverage of the rule */
set An set; /* Set of antecedents */
set Con set; /* Set of consequents */

Figure 4.3: The GRD rule data structure

the consequent set is negative or positive. The modified RULE TYPE data structure is
presented in Figure 4.4.

The new rule data structure has an additional negative set because rules of the form A ∧
¬B ⇒ C can be represented in the data structure by rule → posAn set = {A} and rule →
negAn set = {¬B}. However, if the consequent is negative, then the negative consequent
can be placed in the same location for the positive consequent. In the case of A ∧ B ⇒ ¬C
the rule data structure’s consequent set will appear as rule → Con set = {¬C}.

4.4 Negative Rules Implementation

4.4.1 Calculations for Statistics and Negative Sets

The algorithm for the GRD system is modified to implement negative rules. The data
structure is also modified to be able to store negative antecedent sets within a rule. Statistics
within the rule data structure include coverage, support, strength, lift and leverage. To
calculate these statistics the antecedent set size and the consequent set size are needed.

The consequent tidsets are stored in memory, therefore their sizes are easily attainable. The
size for a negative consequent set is size (Superset) - size (Consequent Tidset). The tidsets
for a negative consequent are not needed and therefore not calculated. Calculating the
antecedent set sizes can also be done in this straightforward manner. However, to create
NewLHS, negative antecedent sets are needed. The method by which negative sets are
calculated is described described below.

GRD maintains the tidsets for positive items and the tidsets for negative items are required
when a negative item is added to the antecedent. Calculating the tidset of negative items by
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RULE TYPE:

RULE TYPE *next; /* Pointer to next rule in list */
int no of cases covered; /* Cases covered by antecedent of rule */
float coverage; /* Coverage of rule (Support (antecedent)) */
float strength; /* Strength of rule (Confidence of rule) */
float support; /* Support of the rule */
float lift; /* Lift of the rule */
float leverage; /* Leverage of the rule */
set posAn set; /* Set of positive antecedents */
set negAn set; /* Set of negative antecedents */
set Con set; /* Set of consequents */
int neg con; /* Negative Consequent Flag */

Figure 4.4: The modified rule data structure

negating the positive itemset could result in a lot of additional computation. An effective
method of calculating these sets are by using diffsets.

If CurrentLHS contains an itemset and a new negative itemset is intersected with Cur-
rentLHS to create NewLHS, then the diffsets technique proves useful. Instead of calculating
the complement of the new set and intersecting the complement set with CurrentLHS, the
difference between CurrentLHS and the new set provides the set for the intersection between
the negative itemset and CurrentLHS. The difference set is stored in NewLHS. Using diff-
sets, the additional computational time is lower than if the complement set were calculated.
Some calculations to efficiently calculate tidsets and support are shown later on in this sec-
tion. The only occasion when complement sets are needed is when CurrentLHS is ∅ and an
itemset needs to be added to CurrentLHS to form NewLHS. This is done by complementing
the current tidset for an itemset and placing the complement set in CurrentLHS.

The following method is used to calculate the tidsets for negative itemsets and support of
a rule. Similarly, strength, lift and leverage can be without using complement sets.

Assume the Reference tidset = T, Tidset for antecedent = A, Tidset for consequent = C,
Tidset for antecedent and consequent = A ∧ C.

1. For the rule A ⇒ C, GRD computes:

• Tidset (A)

• Tidset (C)

• Tidset (A ∧ C)

• Support (A ⇒ C)
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2. For the rule A ⇒ ¬C, GRDI can compute:

• Tidset (A)

• Tidset (¬C) = Diffset (T, C) = T - Tidset (C)

• Tidset (A ∧ ¬C) = Diffset (A, C) = Tidset (A) - Tidset (A ⇒ C)

• Support (A ∧ ¬C) = Support (A) - Support (A ⇒ C)

3. For the rule ¬A ⇒ C, GRDI can compute:

• Tidset (¬A) = Diffset (T, A) = T - Tidset (A)

• Tidset (C)

• Tidset Tidset (¬A ∧ C) = Diffset (C, A) = Tidset (C) - Tidset (A ⇒ C)

• Support (¬A ∧ C) = Support (C) - Support (A ⇒ C)

4. For the rule ¬A ⇒ ¬C, GRDI can compute:

• Tidset (¬A) = Diffset (T, A) = T - Tidset (A)

• Tidset (¬C) = Diffset (T, C) = T - Tidset (C)

• Tidset (¬A ∧ ¬C) = Diffset (T, (A u C)) = T - (Tidset (A) + (Tidset (C) -
Tidset (A ⇒ C)))

• Support (¬A ∧ ¬C) = T - (Support (A) + (Support (C) - Support (A ⇒ C)))

5. For the rule (A ∧ ¬B) ⇒ C, where either in the antecedent or consequent an itemset
is negated, GRDI can compute:

• Tidset (A)

• Tidset (¬B) = Diffset (T, B) = T - Tidset (B)

• Tidset (C)

• Tidset (A ∧ ¬B ∧ C) = Diffset(A ∧ C, B) = T - (Tidset(A ∧ C) - Tidset(B))

• Support (A ∧ ¬B ⇒ C) = (Support (A) - (Support (A ∧ B)) ∧ Support (C)

For each rule above, the calculation of the diffsets can be done through some combination
of the calculations already done by the GRD system. Not calculating the complement sets
results in relatively low additional computation.

An example output of positive and negative rules from both systems is presented in Ap-
pendix B. All the rule generated are not displayed.
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4.4.2 Pruning the Search Space

Pruning in the new algorithm applies to the positive and negative sets as it applies to the
positive set in the original GRD algorithm. Pruning conditions are defined in [30] based on
whether they apply to the antecedent set or the consequent set. To cater for negative rules
the pruning functions are modified accordingly. An example of a pruning condition is as
follows:

Consider GRDtask = <A, C, D, M>, for any P ∈ AvailableLHS, P can be
pruned from SoFar if Coverage(P) < minCoverage.

The full set of pruning conditions are available from [30]. The pruning condition above is
extended for the negative antecedent set as follows:

Consider GRDtask = <A, C, D, M>, for any P ∈ AvailableLHS, P can be
pruned from SoFar if Coverage(P) < minCoverage and for any R ∈ Avail-
NegLHS, R can be pruned from SoFar if Coverage(R) < minCoverage.

Each pruning function for the antecedent and consequent is modified appropriately. This
ensures that pruning conditions are applied to a negative set in the same manner as they
are applied to positive set.

4.5 Conclusion

This chapter discussed the research method used to be able to implement negative rules
within the GRD system. The GRD algorithm is modified by introducing two new sets,
one for negative antecedents and the other for negative consequents. The new algorithm
explores all possible conditions for the antecedent and for the consequent of a rule if the
conditions are not pruned.

The data structure used for rules by the GRD system is modified so that negative an-
tecedent sets can be stored within the structure. However, the negative consequents being
single conditions can be stored in the same location as the positive consequents. A flag is
introduced to the data structure to indicate whether a positive or negative consequent is
being considered.

The only occasion when a complement set for an itemset needs to be calculated is when a
new element is being added to the antecedent of a rule. On all other occasions the tidsets
for negative sets are calculated using the diffset technique (positive itemset’s tidset and its
superset). The pruning functions within the GRD system are appropriately modified to
prune negative conditions and positive conditions.
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Chapter 5

Analysis of Experiment Results

5.1 Introduction

The modified GRD program is referred to as GRDI (GRD new Implementation). Experi-
ments were carried out on ten datasets with the modified GRD system. Most of the datasets
used were the same datasets used for the comparison of the GRD system with Apriori in
[30].

A short description of the datasets used follows in the next section. The records, values
and attributes of each dataset are provided.

The experiments performed on the datasets provided interesting results. The experiments
were run on the GRD system and the modified GRD system, GRDI. These results are
discussed in Section 3. They are analyzed to identify where the additional computation
comes from in the new system. The analysis includes a statistical test to identify correlations
between execution times, leverage values of rules and rules evaluated.

5.2 Datasets

Most of the datasets used to test the systems were used for previous research [30]. There
were ten datasets used for experiments. Nine out of the ten datasets are taken from the UCI
Machine Learning and KDD repositories [6, 10]. The other dataset, ticdata2000 is a market-
basket dataset used in research by Zheng, et al. [36] for Association Rule Discovery. Three
sub ranges were created for numeric attributes. Each sub range approximately contained
one third of the records.

The datasets varied from relatively small datasets to large ones based on the number of
records they contained. The records, attributes and values of each dataset are listed in
Table 5.1.
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Data Files Records Attributes Values
connect4 67,557 43 129
covtype 581,012 55 125
ipums.la.99 88,443 61 1883
letter-recognition 20,000 17 74
mush 8,124 23 127
pendigits 10,992 17 58
shuttle 58,000 10 34
soybean-large 307 36 119
splice junction 3,177 61 243
ticdata2000 5,822 86 709

Table 5.1: Datasets used for Experiments

5.3 Comparison of GRD and GRDI

GRD is the original system which develops positive association rules. GRDI (GRD new
Implementation) is a modified GRD system which generates both negative and positive
rules.

The number of itemsets to keep track of is important when developing rules from GRD. If
the number of conditions available for the antecedent and consequent is 1000, then there
are 21000 possible combinations of itemsets that can be considered. Incorporating negative
rules into the GRD system results in an increase in the number of combinations of itemsets
to 22000. This amounts to an exponential increase in the number of itemsets considered and
therefore a much greater number of rules explored.

The experiments were carried out on the same computer for both systems. The computer
used was a Linux server, had a processor speed of 1.20 GHz and main memory of 256 MB
RAM.

All the conditions in the datasets were allowed in the antecedent and the consequent of the
rule for the experiments. The input for both programs were the same. An example input
for an experiment to be performed on the shuttle dataset with GRD was:

associations ../data/shuttle.hdr ../data/shuttle.data -number-of-cases=58000 -
search-by-measure=leverage -nontrivial=0 -minimum-strength=0.8 -minimum-
support=0.01 -max-number-of-associations=1000 -maximum-LHS-size=4 -minimum-
lift=1.0

The same values were used with GRDI for the shuttle dataset. Header files contain infor-
mation about the structure of the data describing the values of an attribute.
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The constraints specified in this input and all other inputs were the same inputs used
by Webb and Zhang [30] to conduct research when comparing Apriori with GRD. The
constraints were specifically chosen so that the execution times of both programs on the
datasets are not too long. For any new datasets used appropriate input measures were
defined. For example, setting minimum strength to a lower value, 0.5, might result in a lot
longer execution time compared to minimum strength at 0.8. Through investigation it was
observed that the execution time was greater. GRD takes 5 seconds to execute at strength
at 0.5 compared to 1 second when strength is set at 0.8.

In all experiments GRD and GRDI search for the 1000 rules (-max-number-of-associations=1000)
with the highest value of the search measure, Leverage (search-by-measure=leverage). The
maximum number of conditions available on the left-hand-side was 4 (-maximum-LHS-
size=4) and both systems assume that only a single condition was available for the right-
hand-side. This will simplify the search task.

Other constraints specified were minimum Strength (-minimum-strength=0.8), rules which
have Strength higher than 0.8 were considered to potentially be added to the solution.
Similarly, minimum Support (-minimum-support=0.01) and minimum Lift were defined.
These constraints were specified so that the execution times of the programs on the datasets
were not too long for experiment purposes.

5.3.1 Computational Time

The executions time for GRD and GRDI are presented in Table 5.2. Some of the observa-
tions from the results are:

1. GRD: Execution times for some large datasets (large number of records) are very short
and some are very long. e.g. connect4 has 67,557 records and requires 20 seconds to
develop rules, whereas ipums.la.99 has 88,443 records takes only 7 seconds.

2. GRDI: for most datasets GRDI’s execution time is slightly greater than GRD, e.g.
mush. However, some datasets require a lot longer execution times for GRDI than
GRD, e.g. ticdata2002.

The reason for large increase in the computational time for some datasets (ipums.la.99) is
primarily due to the increase in the size of the search space. If a small number of rules are
negative then the execution time is only a little greater. If a majority of rules are negative
(sometimes all) then the execution times are a lot greater. The increase in execution time
is directly proportionate to the increase in size of the search space.

The Execution times for GRD and GRDI on all the datasets can be compared more easily
with a line graph presented in Figure 5.1, created with Microsoft Excel 2000. A logarithmic
scale along the x-axis is used to be able to view datasets with relatively low execution times.
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Data Files Records GRD GRDI Ratio
connect4 67,557 20 106 5.30
covtype 581,012 835 1976 2.37
ipums.la.99 88,443 7 1634 233.43
letter-recognition 20,000 1 34 34.00
mush 8,124 1 8 8.00
pendigits 10,992 1 28 28.00
shuttle 58,000 1 11 11.00
soybean-large 307 1 4 4.00
splice junction 3,177 6 1872 312.00
ticdata2000 5,822 7 647 92.43

Table 5.2: Execution times of GRD and GRDI

Figure 5.1: Comparison of Execution Times
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GRD GRDI
Data Files min. lev. max. lev. mean min. lev. max. lev. mean
connect4 0.1224 0.1227 0.1225 0.1688 0.1707 0.1698
covtype 0.1083 0.1743 0.1413 0.2459 0.2474 0.2467
ipums.la.99 0.2080 0.2484 0.2282 0.2499 0.2500 0.2500
letter-recognition 0.0455 0.1459 0.0957 0.1020 0.1499 0.1395
mush 0.1558 0.2109 0.1833 0.1994 0.4930 0.3390
pendigits 0.0615 0.1757 0.1186 0.1050 0.1832 0.1441
shuttle 0.0409 0.1599 0.1004 0.0911 0.2040 0.1766
soybean-large 0.2137 0.2359 0.2248 0.2286 0.6182 0.4324
splice junction 0.0404 0.1523 0.0963 0.1244 0.1733 0.1489
ticdata2000 0.1899 0.1922 0.1910 0.2184 0.5341 0.3763

Table 5.3: Comparison of Minimum and Maximum Leverage values

5.3.2 Analysis of Rules Generated

The execution times for several datasets were greater for GRDI compared to GRD. Compar-
ing the leverage values for rules generated by both systems is indicative of the type of rule
generated by both systems. Leverage is the difference between the joint frequency of the
antecedent and consequent (Support (A ⇒ C)) and the frequency if they were independent
(Support (A) × Support (Y)).

The main observations about the rules are:

1. Both Systems: The leverage values for the rules from GRDI were greater than the
values for the rules generated from GRD.

2. GRDI: Some proportion of all the rules in all datasets were negative rules. Some
solutions consisted only of negative rules.

Consider the rules generated by GRD for connect4. The rules generated had a maximum
leverage value of 0.1227. For GRDI, the minimum leverage for a rule was 0.1688, which
shows that all 1000 rules generated by GRDI were negative rules. Table 5.3 lists the
minimum and maximum leverage values for GRD and GRDI. The comparison of minimum
leverage values of the rules generated by both systems shows that GRDI always contains
negative rules in its solution. For the datasets in which GRDI’s execution times were a lot
longer than GRD, rules with much higher leverage were also generated. This is also true
of the maximum leverage values. A comparison of the minimum and maximum leverage
values are presented in a graph in Figure 5.2. An important observation is that for several
datasets the minimum leverage value of GRDI is greater than the maximum leverage value
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of GRD. The information contained within the observation is that all the rules generated
for those datasets are negative rules.

Figure 5.2: Comparison of Leverage of GRD and GRDI

5.3.3 Statistical Tests

Statistical tests are useful to determine whether or not correlations exist between Execution
Times (see to Table 5.2), Leverage Values (see to Table 5.3)and the Number of Rules
Evaluated by both systems. The number of rules evaluated and the number of data accesses
are listed in Appendix C. The Coefficient of Correlation statistical test was applied to the
results obtained from the experiments conducted. The interesting correlations are pointed
out below.

1. Between the execution times for both systems, there exists a relatively strong positive
correlation (0.558). The implication of this correlation is that when the execution
time for one system is high, it is likely that the execution time for the other system
will also be high.

2. There is a negative correlation between the execution times for both systems and the
mean leverage values (see to Table 5.3) of rules generated by both systems (GRD: -
0.0609, GRDI: -0.0986). The negative correlation is very weak however. These values
imply that if a system is to take a long time to execute the leverage values are likely
to be low. If it takes less time to execute the leverage values are likely to be high.
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3. A positive correlation exists between the execution times for both systems and the
number of rules evaluated. This correlation shows that more rules evaluated result in
longer execution times.

• GRD(Execution Time, Rules Evaluated): 0.5506

• GRDI(Execution Time, Rules Evaluated): 0.5383

5.4 Conclusion

The modified GRD system is called GRDI (GRD new Implementation). To develop negative
rules the number of itemsets considered increases exponentially which results in a larger
number of rules to explore. Both systems GRD and GRDI are tested on several datasets
to examine their execution times and the rules that they develop.

Ten datasets are used to test GRD and GRDI. Most of the datasets used are the same
ones used for the comparison of Apriori and GRD in [30]. Nine out of the ten datasets are
used from the UCI Machine Learning and KDD repositories, and the other one is the same
datasets used for research by Zheng, et al. [36].

To compare GRD and GRDI the execution times for both systems are noted and observed.
On some datasets GRDI requires a lot more computation time that GRD. Comparing the
leverage values of the rules generated by GRD and GRDI shows that negative rules are
almost always a part of the solution (high leverage compared to positive rules generated by
GRD). This implies that the datasets used contained a lot more negative rules than positive
rules. When execution time for GRDI is greater than that of GRD it is observed that a
majority of rules or all the rules are negative in the solution.

The reason that GRDI takes a lot longer to execute on some datasets is because GRDI is
searching through many more rules. The result is additional computation and the compu-
tation is a lot more if most of the rules to be generated are negative.

The Coefficient of Correlation statistical test shows that there is a positive correlation
between the execution time of the two systems. There also exists a positive correlation
between the execution times and the number of rules evaluated, but between the execution
times and leverage values of a rule is a negative correlation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

Mining negative rules in large databases has proved to be useful. A specific area is market
basket analysis where rule discovery techniques can be used to improve sales for supermar-
kets. A rule of the form Chips ⇒ (Soft Drink A) and Chips ⇒ (¬Soft Drink B) can be used
by a manager of a supermarket to increase their sales. Using association rule discovery,
mining negative rules has already been explored [17, 31].

The research objective of this project was to develop negative rules using the GRD approach.
There are two main reasons for choosing to use GRD. The first reason is that the minimum
support constraint is not an essential criterion for rule generation. Several rules which
consist of infrequent itemsets could be interesting as the rules might have a high value of
an alternative statistic. Such rules will not be generated using association rule discovery.
A user has the freedom to specify alternative constraints to generate rules in GRD.

The second reason for choosing GRD is because the GRD method allows users to generate
a specific number of rules that maximize a particular search measure. Constraints can still
be applied to limit the space of rules that are searched. On most occasions, the rules with
the highest value of the search measure will be the interesting rules. Therefore, generating
n rules allows the user to look through a subset of the possible rules. As a result a lot of
time can be saved by the user when analyzing the rules developed.

The diffsets technique is employed by the modified system to calculate tidsets for the nega-
tion of an itemset. Instead of calculating the complement set of an itemset, it is possible to
generated the complement set using diffsets. For example, if A and ¬C are the antecedent
and consequent of the rule respectively, then the tidset(¬C) is T - tidset(C) where T is the
superset of C. Since GRD calculates tidsets for all itemsets, using diffsets results in a lower
computational time.
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The changes made to the GRD system are mainly to the GRD algorithm, the rule data
structure and the pruning functions. The GRD algorithm is modified to iterate through a
second antecedent set of negative items. Within this iteration a second consequent set of
negative items is explored in addition to the positive consequent set.

The rule data structure is modified to include negative set for the antecedent, so that rules
of the form A ∧ ¬B ⇒ C can include within their data structure the set for A and the set
for ¬B. The consequent, being a single condition does not require the rule to include an
additional consequent set.

A comparison of GRD and GRDI is carried out. The results show that for several datasets
GRDI took a lot longer to execute than GRD. The reason for this increase in execution time
is because these particular datasets contained many more negative rules than positive rules.
With the increased size of the search space, the execution times are bound to be longer for
GRDI. The leverage values of rules generated show that the rules generated by the new
system had higher leverage than rules developed by original system. This indicates that
most rules generated for the datasets are negative rules. The research aim is to identify if
the additional computation involved in developing negative rules is tractable. The outcome
of the research undertaken is that the solution to the GRDtask (generating positive and
negative rules) is computationally tractable.

Quantities for each item of the antecedent or consequent of a rule are currently handled by
the system. Quantitative attributes will result in more interesting rules. For example, if
a rule such as Tea ⇒ ¬Coffee exists then including specific quantities will generate a rule
which is more useful. A resultant rule would appear as: 10 packets of Tea ⇒ ¬Coffee.

There are some limitations that were observed during the implementation of GRDI. There
is also potential for future work regarding mining negative rules. Both these aspects are
described in the following sections.

6.2 Limitations of the GRDI System

There following limitations of the GRDI system when generating negative rules were ob-
served.

1. The conditions available for the consequent of a rule are limited to a single itemset.
Even though all possible conditions are explored at the right-hand-side of a rule,
including multiple conditions in the consequent of the rule may lead to interesting
rules. However, the system is likely to be a lot more complex if multiple conditions
for the consequent are allowed.

2. Rules of the form ¬(A ∧ B) ⇒ C are not generated by the modified system. This is
because of the need to repeat the loop for the negative antecedent set (see Figure 4.1),
which would not be computationally efficient.
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3. The execution times of GRDI could improve if negative tidsets are maintained in
memory. This will however lead to large amounts of memory used by the program
during execution.

4. If the constraint values are low, then there is a possibility of both positive and negative
rules of the form Tea ⇒ Coffee and Tea ⇒ ¬Coffee appearing in the solution of the
system. The information contained in the rules is not of much use to a user. A solution
to this problem exists within the GRD approach. The user can choose to specify a
fewer number of rules to be generated (Example: specify 500 rules instead of 1000).
Since these rules are the rules with the highest value of the search measure, then it
is likely that one of the rules mentioned above is going to be part of the solution and
the other is not. Another solution to this problem is to raise the constraint values
which will more likely result in one of the rules being eliminated.

5. Several rules generated by GRDI are likely to be spurious rules. There are efficient
filters which can eliminate the rules which are statistically insignificant.The filters
available require low execution times and can therefore be applied without worrying
about additional computation.

6.3 Future Work

There is potential for future work in the area of negative rules developed using the GRD
approach.

1. The rules developed by GRDI include both positive and negative rules. Assessing the
usefulness of the negative rules developed will help users of the system. Eliminating
spurious rules will also allow the user analyze the rules quickly.

2. If GRD is asked to generate 1000 rules from a retail store with the search measure as
Lift, then those rules with the highest Lift value will be generated. Consider the rule
Mobile Phone ⇒ Mobile Phone Plan. It is possible that the first 500 rules generated
are of the form Mobile Phone ⇒ Mobile Phone Plan, between different mobile phones
and mobile phone plans. The rules developed in this situation are not as interesting
as expected.

Grouping of association rules by clustering is discussed by Toivonen, et al. [23]. The
motivation for this approach was to be able to view the large number or rules in
manageable parts. This method provides a potential solution to such a problem.

Another solution that is possible is to group rules of a particular category into a single
variable to create a Variable Hierarchy. A user than has the capability of viewing rules
which are independent of each other from different variables. The rules observed would
be more interesting positive and negative rules.
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Appendix A

Glossary of Terms

Term Explanation
Antecedent The set of conditions in the left-hand-side of a rule
Association Rules Rules that indicate associations between itemsets

of a database.
Class The superset of a set of items.
Consequent The set of conditions in the right-hand-side of a rule
Diffsets The difference set between the superset and the

transaction set.
Itemset A conjunction of a set of items.

Note: could be a single item.
Leverage The difference between the joint frequency of

the antecedent and consequent and the frequency of the
the antecedent and consequent independently.

Lift The joint frequency of the antecedent and consequent
over the frequency of the antecedent and consequent
independently.

Market Basket Analysis of data obtained from a supermarket. Market
Analysis basket data is represented as transactional data.
Negative Rules Rules that consist of a negative

antecedent or negative consequent or both.
OPUS The Optimized Pruning for Unordered Search algorithm.
Search Measure A measure which is used to search through the space

rules. The rules generated maximize the search measure.
Support The frequency of an itemset with respect to its superset.
Tidset The transaction set of an item or itemset.
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Appendix B

Example Outputs

B.1 Output from GRD for mush.data

DUAR - Deakin University Association Rules System.

Copyright (c) 1987-2000 Deakin University.

Fri Oct 31 13:07:44 2003

Arguments: ../data/mush.nam ../data/mush.data -number-of-cases=8124
-out-file=OutFiles/output-mushtest2.txt -search-by-measure=leverage -nontrivial=0
-minimum-strength=0.8 -minimum-support=0.01 -max-number-of-associations=10
-maximum-LHS-size=4 -minimum-lift=1.0

Maximum number of associations = 10
Maximum number of attributes on LHS = 4
Minimum coverage = 0.000
Minimum strength = 0.800
Minimum support = 0.010
Minimum lift = 1.000
Minimum leverage = 0.000
Trivial association rules are allowed Search by leverage

Association rules:

1.IF gill-spacing is c
veil-color is w
ring-type is p

THEN bruises? is t
[coverage= 0.405 (3288); strength= 0.937 ; support= 0.379 ; lift= 2.25 ;
leverage= 0.2109 (1713)]
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2.IF gill-spacing is c
veil-type is p
veil-color is w
ring-type is p

THEN bruises? is t
[coverage= 0.405 (3288); strength= 0.937 ; support= 0.379 ; lift= 2.25 ;
leverage= 0.2109 (1713)]

(All ten rules are not displayed)

10 association rules from 8124 cases

23 attributes and 127 attribute-value pairs

Execution time: 0 seconds (+ 0 input time)

Number of rules evaluated: 1794; Number of data accesses: 6642

B.2 Output from GRDI for mush.data

DUAR - Deakin University Association Rules System.

Copyright (c) 1987-2000 Deakin University.

Fri Oct 31 12:44:21 2003

Arguments: ../data/mush.nam ../data/mush.data -number-of-cases=8124
-out-file=OutFiles/output-mushtest2.txt -search-by-measure=leverage
-nontrivial=0 -minimum-strength=0.8 -minimum-support=0.01
-max-number-of-associations=10 -maximum-LHS-size=4 -minimum-lift=1.0

Maximum number of associations = 10
Maximum number of attributes on LHS = 4
Minimum coverage = 0.000
Minimum strength = 0.800
Minimum support = 0.010
Minimum lift = 1.000
Minimum leverage = 0.000
Trivial association rules are allowed Search by leverage
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Association rules:

1.IF ¬stalk-color-above-ring is o
¬stalk-color-below-ring is o

THEN ¬population is v
[coverage= 0.976 (7932); strength= 0.953 ; support= 0.931 ; lift= 1.90 ;
leverage= 0.4397 (3572)]

2.IF ¬stalk-color-above-ring is o
¬stalk-color-below-ring is o
veil-type is p

THEN ¬population is v
[coverage= 0.976 (7932); strength= 0.953 ; support= 0.931 ; lift= 1.90 ;
leverage= 0.4397 (3572)]

(All ten rules are not displayed)

10 association rules from 8124 cases

23 attributes and 127 attribute-value pairs

Execution time: 3 seconds (+ 1 input time)

Number of rules evaluated: 25109; Number of data accesses: 344481
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Appendix C

Number of Data Accesses and
Rules Evaluated

Rules Evaluated Data Accesses
Data Files GRD GRDI GRD GRDI
connect4 46901 232080 316760 2336819
covtype 260367 149765 1248020 3859382
ipums.la.99 20012 1807053 93743 27433259
letter-recognition 75410 1455969 297256 5788870
mush 18031 122781 66382 968313
pendigits 113792 1135709 448557 6467684
shuttle 14928 78352 64162 455003
soybean-large 43144 278426 166292 3060069
splice junction 3080724 12251714 9460546 308737486
ticdata2000 189965 2711896 795346 104838282


