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Abstract

Combinatorial optimization problems are frequently encountered in scientific and

industrial applications. A large number of these problems are known to be NP-hard

and solving these problems by exact/complete methods is often impractical. There-

fore, heuristic methods are often the best way to deal with such problems. However,

when these problems additionally include hard constraints, heuristic/metaheuristic

methods often fail and perform poorly. A solution to this is to integrate these

methods with techniques like constraint programming (CP) where constraints may

be easily specified and efficiently dealt with thereby providing effective solutions to

combinatorial optimization problems with non-trivial hard constraints.

This thesis specifically investigates the integration of stochastic metaheuristics

and constraint programming for combinatorial optimization problems (COPs) with

non-trivial hard constraints. Among stochastic metaheuristics, we consider ant

colony optimization (ACO) and beam search. The base algorithm we begin with is

the hybrid CP-ACO (Meyer and Ernst, 2004) and the aim of the thesis is to show

that this algorithm can be made efficient by parallelizing the solution construction

of ACO (dependent solution construction as opposed to solution construction on

multiple machines/cores) via beam search leading to the hybrid CP-Beam-ACO.

We consider three case studies to demonstrate the effectiveness of the new hybrid.

The first problem is single machine job scheduling with sequence dependent setup

times (SMJS). The aim here is to minimize makespan making sure hard release

and due time constraints are not violated. Secondly, a resource constrained multiple

machine job scheduled (MMJS) problem is tackled. Here, constraints include release

times, due times, precedences, and a resource constraint across the machines. The

aim is to minimize the total weighted tardiness of the scheduled jobs. The last
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problem considered is the car sequencing (CS) problem. Here a number of cars

requiring options must be sequenced such that sub-sequences of a particular length

may only allow a specific number of each option. We investigate the performance of

our algorithms on the optimization version which further requires the utilization of

options be effectively modulated across the sub-sequences.

By applying ACO, Beam-ACO, CP-ACO and CP-Beam-ACO to the above prob-

lems we see that CP-ACO methods are by far the best performing algorithms in

terms of solution quality. This is clearly seen on the SMJS and CS problems for

which complex CP models have been defined. There is a slight disadvantage to

CP-ACO for the MMJS problem where the CP model is relatively simple. In terms

of finding feasible solutions, the feasibility advantages of CP-ACO are inherited

by CP-Beam-ACO. We also see for the MMJS problem that CP-Beam-ACO has a

significant advantage in this respect.

In conclusion, this thesis demonstrates that constraint-based ACO is an efficient

and effective method to tackle real-world COPs. In particular, CP-ACO can be

made efficient by parallelizing the solution construction of the ACO component

resulting in CP-Beam-ACO. The new algorithm provides significant advantages for

three different types of real-world COPs with non-trivial hard constraints and can

be viewed as the practically viable option for implementing ACO with CP.
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Glossary and Notation of Terms

Notation

• π: a vector of variables representing a permutation

• π̂: waiting list of jobs

• σ(π): a placement obtained from the permutation π

• f(π): objective value of the permutation π

• τ : pheromone trails

• η: static heuristic factor

• α: bias for the pheromone, i.e, pheromone raised to α, τα

• β: bias for static heuristics, i.e, heuristic raised to β, ηβ

• θ: beam width

• µ: multiplier for beam width

• φ: estimate for beam component

• cf : convergence factor

• PR: the precedence set for the jobs in J

Algorithms

• ACO: ant colony optimzation

– ACS: ant colony system, a variant of ant colony optimization

– MMAS:MAX–MIN ant system, a variant of ant colony optimization

• CP: constraint programming, refers to FDCP in this thesis

• FDCP: finite domain constraint programming

• CP-ACO: hybrid ant colony optimization with constraint programming

xx



– CP-ACS: hybrid ant colony system with constraint programming

– CP-MMAS: hybridMAX–MIN ant system with constraint program-

ming

• Beam-ACO: hybrid beam search and ant colony optimization

– Beam-ACS: hybrid beam search and ant colony system

– Beam-MMAS: hybrid beam search and MAX–MIN ant system

• CP-Beam-ACO: hybrid beam search and ant colony optimization with con-

straint programming

– CP-Beam-ACS: hybrid beam search and ant colony system with con-

straint programming

– CP-Beam-MMAS: hybrid beam search andMAX–MIN ant system

with constraint programming

• LP: linear programming

• ILP: integer linear programming

• BRIC: blocked recursive image computation

• SA: simulated annealing

Problem Specific Notation

• SPP: strip packing problem

• BP: bin packing

• SMJS: single machine job scheduling with sequence dependent setup times

• MMJS: resource constrained multiple machine job scheduling

• CS: car sequencing

– uoa: upper over-assignment

– uua: upper under-assignment

– DSU: dynamic sum of utilisation

• TSP: the travelling salesman problem
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Chapter 1

Introduction

Combinatorial optimization problems (COPs) are important in scientific and in-

dustrial applications. These problems commonly appear in practical settings such

as timetabling, airline/train scheduling, rostering, network design, computational

biology, etc. and can be notoriously hard to solve. Thus, methods that can deal

with such problems are of significant interest to scientific and industrial communities

which has provided strong motivation to improve existing methods or develop new

methods.

Typically, there may be several solutions that solve a COP. The aim is to identify

the solution (which may not be unique) that optimizes some measure. Often, the

solution spaces associated with these problems are very large (beyond a polynomial

factor of the size of the input) with no directed way of exploring them. Thus, it

is infeasible to exhaustively explore all solutions.1 Such hard problems belong to

the class of NP-hard or NP-complete problems (Papadimitriou and Steiglitz, 1998;

Lewis and Papadimitrious, 1981; Sipser, 2005) and can be distinguished as follows.

If the problem in consideration can be reduced to a problem known to be in NP in

polynomial time, the problem is NP-complete. If this mapping is not possible and

the problem is still considered as hard as any problem in NP then it belongs to the

class of NP-hard problems. These problems usually require significant resources to

identify an optimal solution.

Methods to solve COPs can be broadly categorised as complete/exact or incom-

plete methods. Complete methods are those methods that explore the entire search

space to identify the optimal solution to the problem. However, for large search

spaces these methods are often impractical due to time and resource requirements.

Exact methods such as constraint programming (CP) (Marriott and Stuckey, 1998)

eliminate parts of the search space where no solutions exist so that good solutions

1Problems for which a solution can be determined in polynomial time are considered to be in
the class P whereas those problems for which solutions may be validated in polynomial time belong
to the class NP. Furthermore, P ⊂ NP.

1
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may be obtained more quickly thus making the search more efficient. However, the

performance of these methods are dependent on the problem characteristics. For

example, tightly constrained problems may be quickly solved with CP whereas the

run-time on loosely constrained problems me be prohibitive. In general, full searches

with these methods are usually expensive but they will guarantee finding the global

optimum.

Solving NP-hard problems to optimality in polynomial time is not possible if

P 6= NP . Hence, complete or exact methods may be infeasible if search spaces

are large and there may not be effective ways to systematically reduce them. Thus,

alternative methods with reasonable solution times for these problems have been in-

vestigated. For example, heuristic methods provide a means to solve these problems

in reasonable time-frames using limited resources (Blum and Roli, 2003). These

methods do not guarantee finding the optimum but, if designed well, can usually

find good locally optimal solutions. The methods are also mostly problem specific,

therefore, applying such techniques to new problems are limited.

Metaheuristics (Blum and Roli, 2003) are an alternative that encompass the

advantages of heuristics and aim to be problem independent. They achieve this

by providing a generic framework which may be adapted to the particular problem

being solved. All metaheuristics are designed to intelligently explore search spaces

by exploring ‘good’ regions and provide the best solution until some termination

criterion is met (e.g. time limit). This usually results in finding good solutions, with

longer searches likely to find better solutions.2 Among metaheuristics, a popular

nature-inspired method is ant colony optimization (ACO) which is the stochastic

algorithm focused on in this thesis.

Real-world COPs often consist of non-trivial hard constraints. Metaheuristics

have previously shown to be able to deal with trivial constraints, however, their

performance on problems with non-trivial constraints is not as effective. In this

context, complete/exact and incomplete integrations have led to successful hybrids

in the past. Examples include genetic algorithms with linear programming, mixed

integer programming, and branch & bound (Puchinger and Raidl, 2005; Klau, Ljubi,

c Moser, Mutzel, Neuner, Pferschy and Weiskircher, 2004; Vasquez and Hao, 2001;

Talukdar, Baeretzen, Gove and de Souza, 1998).

CP is a technique designed to deal with constraints. However, a potential draw-

back of CP is when a problem consists of a large search solution space with relatively

few constraints. Here, despite the constraints, the search space is so large that

finding the optimal solution may be intractable. The search component is where

2Most incomplete methods are also called any time methods since they can provide solutions
at any time during the search.
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metaheuristics are effective. Thus, by combining CP and metaheuristics, their rela-

tive advantages can make the resulting hybrid effective on problems with non-trivial

constraints and large search spaces and this has indeed been demonstrated previ-

ously (Meyer and Ernst, 2004). This thesis examines this CP-ACO hybrid and aims

to improve its performance across problem types by addressing some of its inherent

inefficiencies.

In ACO, a solution to a problem is constructed from scratch by incrementally

adding solution components to partial solution until a complete solution is obtained.

Thus, due to its constructive nature, it provides a promising framework to hybridize

with CP. Meyer & Ernst (2004) showed how this can be done effectively by applying

the ensuing algorithm to a single machine job scheduling problem with sequence

dependent setup times. However, their method suffered from the problem of large

CPU time requirements in order to solve relatively large problem instances. The

main problem here being that the ACO component of the algorithm frequently

reconstructs (parts of) a solution requiring repetition of the same propagation steps.

Here, we propose a solution to this by further hybridizing with beam search (Blum,

2005) to overcome this problem. Beam-ACO employs a parallel and dependent

construction of solutions at each iteration in the style of beam search. Through

the partial parallelization of the search it allows the storage of intermediate solver

states compactly in a systematic form. This efficient use of the constraint solver

leads to more computation time that can be devoted to the optimization/learning

component. The resulting algorithm CP-Beam-ACO is shown to be effective on

three different problems including single and multiple machine job scheduling and

car sequencing.

1.1 Combinatorial Optimization

Combinatorial optimization refers to the theory that deals with methods to solve

combinatorial problems (Papadimitriou and Steiglitz, 1998; Christofides, Mingozzi,

Toth and Sandi, 1979; Foulds, 1984). These problems are referred to as combinatorial

since several aspects of the problem involve discrete structures or components. A

COP is an extension of a combinatorial problem where the aim is to optimize an

objective. A large number of real-world problems or their abstracted versions can

be formulated as combinatorial problems or COPs. Hence, methods for solving

these problems have received a lot of attention and a wide range of techniques to

tackle such problems exist today. Examples of these techniques include integer

programming, graph algorithms, dynamic programming, branch & bound, etc.

A solution to a COP can be represented by a set of variables instantiated with

values from their domains. These values may be finite or countably infinite. A
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general version of a COP may be defined as one to minimize

f(π) (1.1)

where π is a vector of variables and

f : S → R (1.2)

The above problem may also include a number of constraints:

C =
n∧
i=1

ci (1.3)

where the constraint set C consist of a number of relations c. We require πk to be

integer valued ∀k in the above definition.

A large number of optimization problems may be framed as linear programming

problems (Bertsimas and Tsitsiklis, 1997). While linear programming is an example

of continuous optimization it plays an important role in COPs (Papadimitriou and

Steiglitz, 1998). These programs require that the objective and the constraints be

linear but do not impose any discrete restrictions. The linear constraints define a

convex polytope with optimal solution/s lying at a vertex of the polytope. Two

well known algorithms for solving such problems include the simplex (Bertsimas

and Tsitsiklis, 1997; Papadimitriou and Steiglitz, 1998) and interior point meth-

ods (Roos, Terlaky and Vial, 2006). Simplex algorithms examine the vertices of

this polytope in some order to find the optimal solution (Papadimitriou and Stei-

glitz, 1998). This leads to linear programs (LP) having combinatorial structure and

in worst case the simplex visits an exponential number of vertices. Alternatively,

interior point methods are polynomial time algorithms which typically start within

the feasible region and work their way towards to the optimal solution. In practical

settings, the simplex algorithm is still an effective method when solving a problem

with a small number of variables. However, for a problem with many variables,

interior point methods are more effective and is currently an active area of research

in optimization research community (Hillier and Lieberman, 2005).

An extension of linear programming is to restrict the variables to discrete values

leading to integer linear programming or integer programming. Here, we have a

COP that is closely related to LP and is generally NP-complete. The corresponding

LP for an integer program may be useful when tackling the original problem. For

example, consider an integer program which is solved by branch & bound search.

Typically, the LP relaxation (πk integer restriction is removed) provides a way to

obtain bounds to be able to solve the original integer program efficiently.
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Now, we give two examples of well known COPs. Often, such problems may be

used to guide the development of solutions when tackling new problems. They may

also appear as sub-problems within the problems of interest.

1.1.1 Traveling Salesman

One of the well known NP-complete problems is the traveling salesman problem

(Dorigo and Stűtzle, 2004; Michalewicz and Fogel, 2004). This is an important

problem since it is closely related to other problems such as scheduling, routing, and

transportation. The salesman is required to visit all cities exactly once and return

to the starting city completing a tour (see Figure 1.1). There is a cost of travel

associated between cities and the tour of minimum length must be found. Formally,

given n cities C = {c1, c2, ..., cn}, edges E = {(x, y) : x, y ∈ C}, and distances

D = {dxy : x, y ∈ C}, minimize the total distance travelled:

n−1∑
i=1

dπiπi+1
(1.4)

where ∀i : πi, πi+1 ∈ E and πn = π1. If dxy = dyx the problem is called symmetric,

otherwise, asymmetric.

C1

C2

C3

C4

C5
5

1

1

1

1

1

4
2

2

2

Figure 1.1: The traveling salesman problem; The optimal path is marked in red.

The TSP can be formulated with an integer program as follows (Christofides

et al., 1979). Let xij = 1 represent using the edge (i,j) in the tour. The objective is

to mimimize

n∑
i=1

n∑
j=1

dij × xij (1.5)
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subject to

n∑
i=1

xij = 1 ∀j (1.6)

n∑
j=1

xij = 1 ∀i (1.7)

xij ∈ {0, 1} (1.8)

These constraints ensure that every city is visited only once. We now need to

include constraints to ensure a tour is complete, i.e. no sub-tours are generated

∑
i∈Ĉ

∑
j∈Ĉ

xij ≥ 1 ∀Ĉ ⊂ C (1.9)

Several methods have been applied to solve the TSP and its variants including

branch & bound, dynamic programming and branch & cut, etc. See (Applegate,

Bixby, Chvátal and Cook, 2007; Reinelt, 2007; Cook, 2011) for an overview of

the methods, variants and the state-of-the-art for the problem. The largest TSP

instance solved to date is the World TSP consisting of 85,900 cities using Con-

corde (Applegate et al., 2007) with Domino-Parity (Cook, Espinoza and Goycoolea,

2007).

1.1.2 The Assignment Problem

Also called the weighted bipartite matching problem, the assignment problem is

another example of a fundamental COP (Papadimitriou and Steiglitz, 1998; Cormen,

Leiserson, Rivest and Stein, 2001). Given a bipartite graph, the aim is to assign

vertices from one partition to the other in an optimal fashion (see Figure 1.2). The

problem occurs in situations like the assignment of task to workers where weights

or a cost between the task and worker are given.

The problem may be formulated as a linear program. We are given a complete

bipartite graph G = (U, V,E) where tasks U = {u1, . . . , un} and workers V =

{v1, . . . , vn} represent the two sets of nodes and E represent the edges. This can

now be modelled via variables xij, where if xij = 1 then the edge between vi and uj

exist in the matching. The objective is to minimize:

n∑
i=1

n∑
j=1

wij × xij (1.10)
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8

5

4

2
3

4

8

4

8

Figure 1.2: The assignment problem with two partitions of three nodes each; The
edges in the optimal assignment are marked in red.

subject to

n∑
i=1

xij = 1 (1.11)

n∑
j=1

xij = 1 (1.12)

xij ∈ {0, 1} (1.13)

where wij is the cost of assigning work i to task j. The above constraints specify

that there may only be one element in V that maps to a single element in U . If

this formulation is solved with the simplex algorithm for example, the resulting

matching will be a real matching without any of the xijs taking on fractional values.

This is because none of the fractional solutions are basic feasible solutions which

is the case when the constraint matrix is totally unimodular (Papadimitriou and

Steiglitz, 1998). Thus, a solution to this problem may be obtained very efficiently,

when at first the problem appears very hard to solve.

Often, some subset of the problem constraints may render the problem NP-

hard. An alternative problem without these constraints can be defined which is

referred to as a relaxed problem or relaxation. For example, notice that eliminating

the sub-tour constraint, Equation 1.9, from the TSP formulation effectively results

in the assignment problem. In general, such relaxations can be extremely useful

when solving the original problem. For the relaxation of TSP above, if a number

of cities have been visited, a lower bound on the cost of the visiting the remaining

cities can be obtained efficiently. This bound can the be used to guide the search to

determine the order of the remaining cities.
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1.2 Motivation

While metaheuristics are effective on NP-hard problems, they typically struggle

when COPs contain non-trivial hard constraints. Traditionally, such constraints in

COPs have been dealt with through penalty, repair or multi-phase techniques (Coello,

2002). In the first category, the constraints are handled as soft and penalised when

optimizing the objective. In the second category, solutions are constructed and those

components where the constraints are violated are repaired. Lastly, with multi-phase

techniques, the first phase is to identify feasibility followed by focusing on optimal-

ity in the second phase. A common aspect of these methods is that they require

problem-specific algorithms which in turn require problem-specific tuning (see for

example (Coello, 2002)).

An integration of CP and ACO (CP-ACO) was proposed by (Meyer and Ernst,

2004) as an alternative to the above methods. CP is typically effective at dealing

with hard constraints and constraint models for different problem types may be

specified effectively without a great deal of effort. CP on its own however, is not

suited to solving NP-hard problems since the search component is usually compu-

tationally intensive. Therefore, ACO with CP guidance is a promising method for

COPs with non-trivial hard constraints and Meyer & Ernst (2004) showed that this

was the case for a single machine job scheduling problem.

Despite its advantageous characteristics for tightly constrained COPs, CP-ACO

inherently contains inefficiencies. ACO solution constructions are incrementally

built from scratch and solutions are independent of each other. The result is that

the same solution may be repeatedly built and more so when the algorithm has

converged to a region of the search space.3 While, this is not a significant prob-

lem for plain ACO, CP-ACO is very inefficient in this context. This is because

CP propagation costs are very expensive and the ACO construction scheme causes

repeated propagation which is wasteful. Therefore, a construction scheme which

constructs solutions in parallel and avoids this repeated propagation is likely to be

more efficient than CP-ACO. One such method is beam search (Pinedo, 2005; Va-

lente and Alves, 2008). Here, solutions are constructed in parallel and no single

solution is built twice during the construction phase. Furthermore, a hybrid Beam-

ACO algorithm was already proposed by (Blum, 2005) which showed that beam

search and ACO can be combined efficiently. This effectively allows us to parallelize

CP-ACO’s construction procedure, we are able to make significant gains in time by

using CP propagation for new solutions always. The result is a significantly faster

3This is a direct consequence of ACO’s construction scheme which will be detailed in the next
chapter.



1.3. AIMS 9

algorithm, CP-Beam-ACO, which provides significant improvements over CP-ACO

where CP-ACO is already effective.

1.3 Aims

The main aim of this thesis was to identify means to improve the performance of CP-

ACO given its large computational requirements. In order to do this, we observed the

large overhead associated with the repeated computation of parts of the search tree

where the costs of CP propagation are high and often wasted. Thus, a solution to

this was to partially parallelize the solution construction procedure via beam search

leading to CP-Beam-ACO. We show that the new algorithm proves to be more

efficient than CP-ACO on three different case studies where CP-ACO is initially

shown to be effective. All these problems consist of non-trivial hard constraints but

the complexities of the CP model vary from very complex (large propagation costs)

to weak models (relatively small propagation costs). In particular, this thesis aims

to demonstrate the following hypotheses:

• CP-Beam-ACO is a more effective optimizer than CP-ACO

– Increasing performance improvements with larger CP propagation re-

quirements

– Choice of estimates for the beam component are crucial

• CP-Beam-ACO inherits the feasibility advantage of CP-ACO

• The CP-based algorithms are generally more effective than the non-CP algo-

rithms (ACO and Beam-ACO)

– In particular, for problems where complex CP models can be defined

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 discusses stochastic meta-

heuristics including ACO and beam search. The application of these methods to

the TSP and a variant of the TSP are discussed. This is followed by discussions

of how both these methods may be customized for specific problems to be tackled.

The next chapter discusses CP and finite domain CP in particular. Here, the char-

acteristics of the CP solver needed for this thesis are also detailed. The background

provided in these chapters leads to the main method suggested in this thesis, namely,

CP-Beam-ACO in Chapter 4. Here, hybridizations are discussed in detail including
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CP-ACO. This is followed by a discussion on CP-Beam-ACO, its characteristics and

its advantages over CP-ACO.

The next chapter, Chapter 5 details how CP-Beam-ACO may be applied to the

SMJS, MMJS and CS problems. These studies details the differences between the

algorithms for these problems and demonstrate the advantages of CP-Beam-ACO.

In Chapter 6 we analyse the estimates for the beam component in detail. Here,

problem specific bounds are examined to determine their effectiveness in conjunction

with CP-Beam-ACO. All the results are tied in together on the final chapter on

conclusions and future work (Chapter 7).



Chapter 2

Stochastic Heuristics and

Metaheuristics

Since the early 1990s metaheuristics have been popular methods for solving com-

binatorial optimization problems. The term metaheuristic refers to a high-level

search strategy and any such algorithm is expected to be applicable to a wide range

of problems. They are an effective way to approach NP-hard problems (Blum and

Dorigo, 2004) as they do not exhaustively explore a search space and are incomplete.

Hence, they do not guarantee finding a global optimum but usually find “good” so-

lutions quickly. They trade-off solution quality with run-time and usually produce

improved solutions with larger run-times. This is a particularly useful characteristic

since alternative models such as those from integer programming might take very

long to provide solutions.

These algorithms are characterized by their ability to manage a trade-off between

intensification and diversification (Blum and Roli, 2003).1 Intensification refers to

focusing the search around promising areas of the search space. That is, given

that a promising area is found the algorithm should efficiently find a local optimum

there. Local search algorithms, for example, are effective at intensification. However,

considering that search spaces can be quite varying with several promising regions,

the algorithm must also explore as many of these regions as possible. This is referred

to as diversification and is achieved by algorithmic specific mechanisms designed to

avoid getting trapped in local minima. Most metaheuristics can manage this trade-

off through a combination of parameters, although, these parameters usually need

a lot of tuning before they can be effective on a problem set. Additionally, there are

generally no good guidelines for doing this.

Metaheuristics may be classified in several ways (see Table 2.1), and here we

discuss three of these classifications suggested by Blum & Roli (2003). Firstly,

1These terms are also called exploration and exploitation (Eiben and Schippers, 1998) but have
a more restricted meaning.

11
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metaheuristics can be classified as constructive or non-constructive. In the former

category, solutions are constructed incrementally from scratch during each iteration

of the algorithm. Examples include ant colony optimization (ACO), the Bayesian

optimization algorithm (BOA) (Pelikan, 2005) and estimation of distribution al-

gorithms (Larrañaga and Lozano, 2002). Each of these algorithms build solutions

from scratch by incrementally adding components to a partial solution until a com-

plete solution is obtained.2 In the latter category, an initial solution is usually

constructed in some random fashion and it is modified in some way. Examples of

non-constructive algorithms include simulated annealing (SA), genetic algorithms

and local search algorithms (Aarts and Lenstra, 2003). For example, genetic algo-

rithms usually work with a population of solutions from which individuals (complete

solutions) are selected for crossover or mutation.3 The resultant solutions may be

placed in the population replacing less fit individuals (e.g., individuals with a higher

cost function in a maximization problem).

Table 2.1: Classification of various metaheuristics.

Simulated Annealing Genetic Algorithms Tabu Search ACO
Constructive 7 7 7 3

Population 7 3 7 3

Nature 3 3 7 3

Secondly, we can distinguish these algorithms based on whether they are na-

ture or non-nature inspired. ACO (Dorigo and Stűtzle, 2004) or genetic algo-

rithms (Mitchell, 1996) for example, mimic processes in nature and fall into the

former class. Other algorithms such as Tabu search (Glover, 1989; Glover, 1990)

or variable neighbourhood search (Mladenovic and Hansen, 1997) come from the

second class. This classification can lead to ambiguity, for example, hybrid meth-

ods could be classified as both nature and non-nature. Furthermore, components

of various algorithms may be attributable to inspiration from nature although they

are classified as non-nature.

Metaheuristics may also be classified as population versus single point based

search. Algorithms in the former class usually maintain a population of solutions

which guide the search in collaborative manner. Several algorithms such as the

genetic algorithm or BOA employ a population to guide the search. In genetic

2In ACO, the next solution component is selected by sampling a probability distribution.
3Crossover is an operator the takes two individuals (parents) and builds a third solution (called

offspring) by selecting components from each of the parents. Mutation operates on single individual
and create a second individual by, either randomly or in some pre-defined manner, modifying its
components.
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algorithms, new solutions are explicitly created from previous ones which are al-

ready in the population whereas in BOA statistics over individuals are used to bias

probability distributions which in turn generate new solutions. In contrast, single

point methods use a single solution and modify this solution through the dura-

tion of the search. These approaches are also called trajectory methods (Blum and

Roli, 2003) and local search methods like simulated annealing (Kirkpatrick, Gelatt

and Vecchi, 1983; Cerny, 1985) is an example of such a search method. In its basic

form, simulated annealing can be described as follows. A neighbourhood structure

is defined for the problem and from a starting solution (randomly generated), the

neighbourhood moves are applied to the solution. If the resultant solution is an

improvement, then this move is accepted, however, with some probability moves to

non-improving solutions are allowed. This probability reduces over the execution of

the algorithm (cooling schedule) and the aim of allowing non-improving moves is to

allow the algorithm to jump out of local minima. It has been shown that under cer-

tain conditions on the cooling schedule that the algorithm converges to the optimal

solution as the number of steps of the algorithm approaches infinity (Aarts, Korst

and van Laarhoven, 1997).

A number of metaheuristics include a learning component within the algorithm.

These algorithms are iterative and the learning usually takes place between itera-

tions. The idea is that the algorithms try to learn characteristics about or depen-

dencies between the variables such that they biased towards promising regions of

the search space. Genetic algorithms and ACO are examples of algorithms which

learn these characteristics over-time. For example, ACO attempts to learn implicit

probability distributions by constructing solutions and biasing the probabilities to-

wards the best solutions found in an iteration. Such learning is also referred to as

reinforcement learning (Sutton and Barto, 1998).

This thesis focuses on ACO and Beam search, a stochastic heuristic tree search

method. ACO is a reinforcement based stochastic metaheuristic and has been shown

to be effective for practical problems. Beam search on the other hand is a well known

tree search method (Pinedo, 2005). The procedure usually works by considering a

fixed number of partial solutions in parallel and continues their construction by using

some sort estimate, which is possibly stochastic. Hence, this algorithm can be viewed

as a stochastic tree search method. ACO and Beam search can be combined easily in

various ways. These details will be discussed in future sections. Here, we point out

the ACO can also be viewed as a tree search method where a new node is selected

probabilistically and if this is coupled with the heuristic estimates, the resulting

algorithm can be considered as a Beam-ACO hybrid. Such hybrid algorithms have

also shown to be very effective in practical settings (Blum, 2005; López-Ibáñez,

Blum, Thiruvady, Ernst and Meyer, 2009).
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2.1 Ant Colony Optimization

ACO is a reinforcement based stochastic metaheuristic inspired by the foraging

behaviour of real ants (Dorigo and Stűtzle, 2004). Ants leave their nest looking

for food and the lay pheromone on the paths they use when returning to their nest.

Other ants will go out looking for food guided by the pheromone by probabilistically

following the paths. The pheromones are modulated either by food or path quality

which result in shorter paths or paths to better food sources receiving increased

deposits. The pheromone concentration also decreases gradually which is referred

to as pheromone evaporation. This creates a positive feedback loop resulting in the

colony choosing the more desirable paths to food sources (Camazine, Deneubourg,

Franks, Sneyd, Theraulaz and Bonabeau, 2001).

ACO is also an example of swarm intelligence (Bonabeau, Dorigo and Ther-

aulaz, 1999). In general this refers to the collective behaviour where individuals in

the swarm cooperate through self-organization rather than being directed by some

centralized control. Various nature-inspired algorithms based on these principles of

swarm behaviour have been used to tackle COPs.

The principles underlying the collective behaviour of the colony can be used to

solve COPs. Each member of the colony is required build solutions to the problem

independently. They make use of artificial pheromone trails which are initially un-

biased and therefore the solutions are constructed in a uniformly random fashion.

The construction itself progresses sequentially where at each step the partial can-

didate solution is extended by adding a new solution component4 until a complete

solution is obtained. The next component is chosen probabilistically according to

the pheromone information. When all the ants have completed their solutions an

iteration of the algorithm is complete. Now the solutions available can be used to

bias the pheromones towards the “good” solutions seen so far. The algorithm is

repeated until some termination criterion (e.g. pre-defined time limit).

The description given above is high-level and when applying ACO to a problem

several details need to be considered. These include a the actual pheromone model,

parameters (e.g. number of ants), evaporation schemes and update schemes. While

there are some guidelines for the way in which these details can be implemented in

the case of well investigated problems,5 usually, problem specific settings need to be

determined.

4For example, if we consider the TSP, a solution component is a city. Here, at each step, a city
is added to a partial list of cities until a complete tour is constructed.

5For example, past experiments can suggest parameter settings or a pheromone model for a
similar problem might be useful to attempt on the current problem. See (Dorigo and Gambardella,
1997) for an example of the parameter settings for the TSP.
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An example of a problem specification and specifying a pheromone model will

make things clearer. Consider a problem where n variables X = {x1, . . . , xn} have

potential domains xi ∈ D = {0, . . . , n}. A solution is defined as a permutation

π(X). Without any other knowledge about the problem, a plausible model for the

pheromones could be to define τij as the desirability of selecting domain value j

for component i. The pheromones can then be coupled with problem specific static

(usually the case) or dynamic heuristics. Now the modified pheromone trails are

used to select a value for each variable. This will be used as a running example

through the following sections, where no other ACO model is defined, as a means

to illustrate the various procedures/variants discussed.

Algorithm 1 Basic Ant Colony Optimization Framework.

1: input: A problem instance, na (number of solutions)
2: initialize πib (iteration best), πbs (global best), T (pheromones)
3: while termination conditions not satisfied do
4: Siter := ∅
5: for j = 1 to na do
6: πj := ConstructSolution(T )
7: if πj is a feasible solution then Siter := Siter ∪ {πj} endif
8: end for
9: // Set the iteration best to the best solution

10: πib := argmin{f(π)|π ∈ Siter}
11: if πib is a feasible solution then
12: Update(πib,πbs)
13: // update pheromone trails with the current best solution
14: GlobalPheromoneUpdate(T ,πbs)
15: end if
16: end while
17: output: πbs

The generic ACO framework is shown in Algorithm 1 and works as follows. This

procedure takes as input an instance of the problem. Two “ants” which represent

the best solution found during an iteration (πib: iteration best) and the best solution

found during the execution of the algorithm (πbs: global best) are first initialized.

A pre-defined pheromone model for the problem is also initialized. Here, the main

iteration of the algorithm commences (line 3). A population of solutions Siter is

maintained at each iteration and all feasible solutions built are appended to this

population (lines 5-8). The parameter na specifies the number of individual solutions

to be built during an iteration.6 The procedure ConstructSolution(T ) samples the

pheromone trails to generate solution components incrementally until a complete

solution is built or the solution is rendered infeasible. A value j is selected for

component i according to the following distribution:

6Note that not all of these solutions are required to be feasible.



16 CHAPTER 2. STOCHASTIC HEURISTICS AND METAHEURISTICS

p(πi = j) =
ταij × η

β
j∑

d∈D\{π1,...,πi−1}

(
ταid × η

β
d

) (2.1)

Static or dynamic heuristics factors can be specified via η. α and β are parame-

ters that can be used to specify the relative contributions of the pheromones/heuristics.

The iteration best is set to the best of the feasible set (line 10) and the global best

is updated to the iteration best if the iteration best is an improvement upon it. The

pheromones are then biased by the global best solution (referred to as elitist update)

with the call GlobalPheromoneUpdate(T ,πbs) with the aim being that the search is bi-

ased towards the best solution found so far.7 For example, given a complete feasible

permutation π:

τij ← τij × (1.0− ρ) + f(π)× ρ (2.2)

The first part of the equation is called evaporation (τij× (1.0−ρ)).8 The second

part is a reward that is proportional (inversely proportional for minimization prob-

lems) to the cost - f(π) - of the solution π. This completes the high-level description

of ACO.

ACO can also be represented as a tree search. For example, see Figure 2.1. The

example shows how two ants would sample the pheromones (τ) biased by heuristic

factors (η) to make a value selection for the second variable during the construc-

tion process. The root of the tree represents an empty solution. The two solutions

initially have a state where x1 = 2 and x1 = 4 for the first variable. The two fig-

ures show how x2 = 4 and x2 = 3 are selected for the two solutions, respectively.

This figure also shows solutions are built independently, however, schemes like ant

colony system (see later) apply changes to the selection pheromones thereby im-

plicitly affecting solutions future solutions to be constructed. This representation is

particularly useful in the context of this thesis since other tree search methods are

used and integrations with ACO are more easily explained.

Given the algorithm description above, we now discuss specifics of two variants

ACO. At a high level they perform the same actions/steps but the implementation

of the steps are quite different. Hence, specific details are discussed in the next

section.

7Note that this scheme described here is the one used throughout this thesis, however, other
variants of ACO like Ant System use the entire population to bias the pheromones proportional to
the solution qualities.

8Reproduces the effect of evaporation of real pheromones that happens over time.
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Figure 2.1: This figure demonstrates how ACO can be viewed as a tree search. Node
0 is the root of the tree where the solution construction starts. The first variable is
represented at level 1. In this example, two ants are constructing solutions in parallel
and have chosen x1 = 2, π1 = {2, . . .} and x1 = 4, π2 = {4, . . .}, where the index
represents a variable. The figure on top shows the pheromones and heuristics factors
that are considered by each ant when attempting to select the next component.
Given this information, the first ant chooses x2 = 4, π1 = {2, 4, . . .} and the second
ant selects x2 = 3, π2 = {4, 3, . . .}.

2.1.1 ACO Variants

The original variant of ACO was called Ant System (AS) (Dorigo and Stűtzle, 2004).

While this algorithm was shown to be effective on certain problems (e.g. subset prob-

lems (Leguizamon and Michalewicz, 1999)), including originally the traveling sales-

man problem (TSP), its performance on larger problems was not competitive (Dorigo

and Stűtzle, 2004). Hence, improvements to AS were explored including the elitist

ant system, rank-based ant system, ant colony system (ACS), MAX–MIN ant

system (MMAS), etc (see (Dorigo and Stűtzle, 2004) for an overview of the vari-

ants). Of these variants, ACS andMMAS have been the most popular in practice.

Both algorithms use elitist update but vary in the way they are implemented. The

alternative to elitist update is to use all solutions to update the pheromones and

this scheme was used by the original ant system.
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Ant Colony System

ACS has been used in various studies successfully (Dorigo and Gambardella, 1997;

Gambardella and Dorigo, 2000; Blum and Roli, 2003). The motivation behind ACS

was to improve the poor convergence aspects of AS. In particular, this algorithm

makes use of its accumulated search experience more significantly than the AS by

emphasising the best solutions found. Algorithm 1 remains unchanged, however,

differences appear within components of the procedure. It differs in three aspects

from AS:

• Local pheromone update: this is applied to each value that is selected for a

solution component. This amounts to:

τij ← τij × (1.0− ρ) (2.3)

where ρ is a learning rate parameter which is usually set to a low value. This

procedure is applied within the ConstructSolution(T ) procedure in Algorithm 1.

The aim behind this procedure is to emphasize diversification such that the

ants are biased to pick different values during the solution construction. This

bias affects other solutions which are still to bind variable i and hence, the

solutions are not built entirely independently.

• Greedy selection: given a parameter q0, the value for a component is selected

deterministically according to the highest pheromone value. q is sampled uni-

formly from the interval [0, 1]:

p(πi = j) =


ταij×η

β
ij∑

k∈Ii
ταik×η

β
ik

if q > q0

maxk∈Ii{ταik × η
β
ik} otherwise

(2.4)

• Elitist update: as specified earlier, ACS uses an elitist update according to

Equation 2.2. While this update is usually based on the global best solution

(the best solution found up to this point in the search), some applications show

improved performance by using the iteration best solution (the best solution

constructed during the current iteration, see (Dorigo and Stűtzle, 2004)).

MAX–MIN Ant System

The MAX–MIN Ant System (MMAS) (Stűtzle and Hoos, 2000) is the other

ACO variant used in this thesis.9 It has also been successfully used in practice

9MMAS is chosen for the experiments here as it has been shown to be an effective implemen-
tation of ACO and some of the studies we examine have already shown MMAS to be effective.
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(Blum, 2005) Like ACS, MMAS build upon the basic principles of AS and the

high-level Algorithm 1 is the basic framework used here.

MMAS in its original version differs from the other variants in the following

aspects:

• Upper and lower bound on the pheromones: the pheromones have lower and

upper limiting values (τmin and τmax) which are specified as parameters to the

algorithm. The lower bound is typically set to a value close to 0 but positive

to ensure that the algorithm does not get stuck in a local minima. In the

hyper-cube framework (see next section) τmin = 0.01 and τmax = 0.99 are

usually used to ensure that the values lie between 0 and 1.

• Initial pheromone distribution: the initial values are usually set to be equal

to the upper bound (Dorigo and Stűtzle, 2004). In some schemes like (Blum,

2005) other initial conditions are specified.

• Restarts: The algorithm restarts every time the pheromones converge and the

ants are almost always constructing the same solutions. The restart schemes

are quite varied but depend on a convergence measure10 which is a function

of the pheromones.

• Elitist update: this is identical to what is done with ACS. Updates based

on the global best and iteration best have been attempted and there is no

consistent way suggested to implement this. In fact, (Blum, 2005) showed

that some combination of the iteration best, global best and another solution

- the restart best - is the best way to implement this.

At the end of each iteration the pheromone for every component is evaporated

similar to Equation 2.3. The pheromone update in Equation 2.2 is accordingly

modified to look like:

τij ← min(max(τij × (1.0− ρ) + f(π)× ρ, τmin), τmax) (2.5)

which is essentially the same as the global update with the bounds applied.

In this thesis MMAS is used extensively. However, the details of the specific

implementation for each application has varied due to the “ideal” implementation

suggested by previous studies. These details are provided in the relevant chapters.

10For example, a simple convergence measure that can be implemented can be defined as follows.
For a number of iterations, if the algorithm is constructing the same iteration best solution, then
the pheromones are likely to have converged and can be reset.
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The Hyper-Cube Framework

The hyper-cube framework (HCF) for ACO is applicable to all of the available

ACO variants (Blum and Dorigo, 2004). This framework imposes a change to the

pheromone update by modifying Equation 2.2:

τij ← τij × (1.0− ρ) + ρ (2.6)

This results in the pheromone values falling in the interval [0, 1]. Practically, HCF

has the advantage that this handles the scaling of the objective function. Theoreti-

cally, Blum & Dorigo (2004) were able to prove that for the original AS algorithm

the expectation of average quality of solutions improves overtime.

2.1.2 Applying ACO

Here, we show an example of how ACO may be applied to a problem. We con-

sider the TSP introduced in Chapter 1 and focus on the study by (Dorigo and

Gambardella, 1997) who showed that ACO can be applied effectively to this prob-

lem. This paper also considers the ATSP where the distances dij = dji does not

necessarily hold for any two cities i and j.

For the TSP, a solution can be represented by a sequence or π where the sequence

represents the order in which the cities are visited. Here, we require π1 = πn + 1

so that the first and the last cities visited to the same city in order to complete the

tour. Successor relationships are particularly important for this problem, i.e., we

visit a city given the knowledge of the previously visited city. Thus, the pheromone

information encodes this bias where τij represents the desirability of of visiting city

j given that we are at city i. Dorigo and Gambardella (1997) use ACS which makes

use of Equation 2.411 when selecting any city that is not the starting city. The

solution construction procedure initially picks a random city (the original starting

location does not matter) and incrementally adds cities until a complete tour is

obtained. The next city chosen is based only on the previous city and is selected

from the candidate set of cities that have not yet been visited.

The heuristic factors ηij are chosen as 1/dij which is the inverse of the distance

between the city to be chosen j to city i that we have previously visited. This biases

the selection to favour cities that are close in distance. Intuitively, selecting amongst

the closest cities is likely to lead to better solutions and this is encoded by static

heuristics.

Once a number of tours have been completed, local search is applied to the best

of these solutions possibly improving it. This solution is used for the global update

11Note that α = 1.0 for this study
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of the pheromones using Equation 2.2. Here f(πbs) is set as:

f(πbs) = 1/
n∑
i=1

d(πbsi , π
bs
i+1) (2.7)

where πbs is the best sequence found and πbs1 and πbsn+1 are the same city. Being ACS,

a local update rule is also applied every time a city is chosen. Various methods of

implementing this were examined by (Dorigo and Gambardella, 1997) and a modified

version of Equation 2.3 is applied

τij ← τij × (1.0− ρ) + τ0 × ρ (2.8)

where τ0 = 1/(n × f(πnn)) is the initial pheromone level. πnn is the sequence pro-

duced by the nearest neighbour heuristic, i.e., from each city, select the closest city

to move to and repeat this until a tour is complete. Note that (Dorigo and Gam-

bardella, 1997) explore other initial values of τ0 and these details can be obtained

from the paper. The learning rate is set to ρ = 0.1 and q0 = 0.9 which favours high

deterministic selection. Details of the parameter settings choices are also discussed

in the paper, but as we mentioned earlier, there is no easy way of choosing them.

Given these settings, Dorigo and Gambardella (1997) show that ACS combined

with local search is an effective way to tackle the TSP and the ATSP performing

competitively with simulated annealing and genetic algorithms.

2.2 Beam Search

Beam search was first introduced in the 1970’s as a alternative to tree search meth-

ods (Rich and Knight, 1991). Like other metaheuristics, it is an incomplete heuristic

search and provides an effective way to deal with NP-hard problems (Pinedo, 2005;

Valente and Alves, 2008). It can be viewed as a branch & bound like search where

estimates are used to guide the search through each level of the search tree. At each

level of the tree the algorithm keeps track of a maximum number of solutions which

are chosen based on the estimates. Since the solutions are limited by this parameter,

the algorithm runs in polynomial time given the input. However, unlike branch &

bound methods back-tracking is not allowed. Therefore, the algorithm is incapable

of retracing its steps to reconsider promising branches of the tree that it might have

eliminated incorrectly. However, the basic algorithm can be modifed to explore al-

ternative paths via an iterative procedure that incorporates some variation in the

node selection. Beam search has been successfully applied to several COPs and

in particular to scheduling (Bautista, Companys and Corominas, 1988; Bautista,

Companys and Corominas, 1996; Valente and Alves, 2008).
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Algorithm 2 The Basic Beam Search Framework.

1: input: (θ, µ, T )
2: // initialise the beam with beam width empty solutions
3: B0 = {π1 = (), . . . , πθ = ()}
4: t = 0
5: while t < n and |Bt| > 0 do
6: for i ∈ Bt do
7: k ← 0, D = domain(πit+1)
8: while k < µ do
9: π = πi

10: j = select component(D, T )
11: πt = j
12: Bt+1 ← Bt+1 ∪ π
13: k ← k + 1, D = D \ j
14: end while
15: end for
16: Bt+1 = Reduce(Bt+1, θ)
17: t← t+ 1
18: end while
19: output: argmax{f(π) | π ∈ Bn−1}

The search proceeds in a parallel fashion like ACO. However, unlike ACO, there

are dependencies between the solutions. The general framework for Beam search is

as follows (see Algorithm 2). A data structure called the beam (B) consists of a set of

partially completed solutions to be constructed. The algorithm builds the solution

by binding values to variables incrementally (lines 5-17). Initially, the beam consists

of no solutions. µ potential extensions are generated to fill the beam (lines 8-14)

for each partial solution πit+1. This can be done in several ways, for example, with

a greedy selection based on some static heuristic. From amongst these candidates,

a pre-defined number - the beam width θ - children are selected to be placed in the

beam (line 16). If there are fewer candidates than this number to select from all of

them are selected.

Consider Figure 2.2. This example shows a single level of construction in the

Beam search procedure. Two solutions are being built in parallel: π1
2 = {2, . . .} and

π2
2 = {4, . . .}. To select a value for the next variable, a fixed number of extensions for

each solution are considered. Candidate extensions 3, 4 and 5 for the first solution

and 1,2 and 3 for the second solution are considered.12 An estimate (φ) for each

child is computed (e.g. φ2,3 for candidate 3 given that 2 was the previously bound

variable) and two extensions for each partial solution are selected greedily based

on these estimates. Here, we can see how the dependence between solutions in the

beam cause the branch of the tree π1
2 = {2, . . .} to be eliminated from the search.

12Candidate 2 is ruled out for the first soltuion since it has alread been bound to variable 1.
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Figure 2.2: The Beam search procedure is shown here for two variables. Node 0
is the root of the tree where the solution construction starts. The first variable is
represented at level 1. The following parameters are set: θ = 2, µ = 3. Two solutions
are constructed in parallel and x1 = 2, π1

2 = {2, . . .} and x1 = 4, π2
2 = {4, . . .} have

been chosen for the first variable. The figure on top shows that for each child, 3
solution extensions are considered for which estimates (φ) are computed. Using the
estimates, the solutions chosen to be placed in the beam are π1

3 = {4, 2, . . .} and
π2

3 = {4, 3, . . .}.

The search instead focuses on the branch with π2
2 = {4, . . .}. Therefore, it is vital

that φ is chosen appropriately, otherwise, the search will be guided into sub-optimal

regions of the search space. This also provides the added avantage of focusing the

search more stongly around optimal regions if the estimates are effective.

The estimate can be obtained in several ways but an effective estimate is crucial

to the success of the search. We can distinguish between estimates that compute

information about a child at the next level of the tree (priority evaluation) and

those that compute information about a child extrapolated through to complete

solution (total cost evaluation) (Valente and Alves, 2008). While priority evaluation

is usually very quick its local nature may be misleading at the global level. Since

the estimate is directly used to compare solution extensions, an estimate based

on a single variable is unlikely to provide enough information about how good a

complete solution is. Therefore, the resulting estimate may actually prune away

more promising nodes of the search tree.
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Hence, the preferred option is usually total cost evaluation methods which may

incur a significantly larger cost but can be designed to guide the search with the

global goal in mind. A common method to obtain the estimate is by using known

bounds for a problem. Typically, a relaxed version of the problem may permit a

quick bound which can be substituted for the estimate. See for example Valante et

al. (2008) who explore a Beam search algorithm for a single machine total weighted

tardiness problem with sequence dependent setup times. Problem specific estimates

are discussed later in the thesis when needed, but in the next section we discuss

stochastic sampling or probing which is consistently examined for all problems to

follow.

In its classical version, Beam search does a single iteration through all the vari-

ables in the problem terminating the search when it reaches the leaves of the tree.

However, often the estimates might lead to sub-optimal regions and this leads to

the idea of repeating the Beam search procedure with a bias towards the better

solutions observed thus far. This leads to an obvious integration which is discussed

next.

2.2.1 A Beam-ACO Hybrid

The Beam search procedure can benefit from repeated iterations of the search with

a learning component. By introducing some variation in the candidate selection

the search can be guided out of local optima. Such a learning component is the

basis of ACO which makes a Beam-ACO integration an obvious choice. In fact, it

was originally shown by Blum (2005) that this integration is very effective on open

shop scheduling problems and other studies have substantiated this (López-Ibáñez

et al., 2009). The basic idea is to use ACO as a high-level framework (can be imple-

mented with any of the variants) and to replace the solution construction (line 6 in

Algorithm 1) by a probabilistic version of Beam search. Thus, a probabilitic model

for learning such as the pheromone model in ACO is suitable for this purpose. Once

this is defined, the children can be selected using one of the ACO selection schemes

which will be implemented in Algorithm 2. The candidate soltuions can now be

reduced to θ solutions based on the estimate (line 16 in Algorithm 2). This proba-

bilistic variant initially conducts an unbiased search when selecting children but then

biases the search towards promising areas through the learning component. Coupled

with the estimates, Beam-ACO incorporates two levels of selection providing mroe

flexibility than plain ACO.

This implementation of Beam search also permits an alternative way to deter-

mine a total cost evaluation estimate. The basic idea is to use the ACO solution

construction scheme which is relatively cheap. This is discussed next.
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Stochastic Sampling

Probing was first introduced in the context of heuristic tree search methods for

boolean satisfiability and number partitioning (Ruml, 2001) . Here, we consider

stochastic sampling, which can be considered as a way to achieve probing. The

idea behind this method is relatively simple. Instead of deriving an independent

estimate for Beam search, an estimate may be obtained by completing a number of

solutions (N s) randomly and choosing the cost of the best of these solution to be the

estimate. In the context of Beam-ACO, the basic ACO construction procedure may

be used to generate the N s samples from which the cost of the best of these is used

as the estimate. Alternatively, if an even quicker estimate is desirable, a solution

may be completed deterministically using the greedy component of Equation 2.4 for

every variable until the solution is complete. If heuristics are used, then in the initial

part of the search this estimate basically evaluates to the static heuristic and at later

stages of the search it is biased entirely by the pheromones. Although these methods

of obtaining estimates are relatively simple they has shown to work effectively for

some scheduling problems (López-Ibáñez et al., 2009; Thiruvady, Blum, Meyer and

Ernst, 2009).

2.2.2 Applying Beam-ACO

Beam-ACO may be applied to problems where ACO can be applied effectively.

However, its performance is dependent on the quality of the estimates that are

obtained for the beam search component of the algorithm. Coupled with the learn-

ing component, Beam-ACO is more flexible than plain ACO with intensification

or diversification more easily achieved. However, the drawback is that additional

parameters have been introduced leaving the algorithm designer with with further

choices to make which may not be easily achieved.

Here we show that Beam-ACO can be applied effectively to a variant of the TSP

problem. We consider the TSP with time windows (TSPTW) which is effectively

the TSP that we discussed earlier with the additional constraints that each city i

has an associated start time si and end time ei specifying the time window when

the city must be visited. The constraints are implemented as hard, where if we have

arrived early we can wait but are not allowed to arrive late.

The problem above was tackled by (López-Ibáñez et al., 2009) where we used

Beam-ACO similar to Algorithm 2. ACS was the variant used for the learning

component. A solution can be represented by the sequence π and the beam is

composed on θ of these partial sequences at any one time. For every solution in

the beam, we consider all possible children and select a subset of these (θ × µ) in a
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similar fashion to Equation 2.4 where the heuristic ηij is based on the earliest start

time (sj) and latest end times (ej):

ηij =
1.0

λd × dmax−dij
dmax−dmin + λe × emax−ej

emax−emin + λs × smax−sj
smax−smin

(2.9)

and λd + λe + λs = 1 are weights that balance the impact the heuristics. The above

measure essentially provides information combining the travel costs between cities.

See (López-Ibáñez et al., 2009) for further details.

Stochastic sampling is used to obtain the estimates. For each partial sequence

(amongst the θ × µ candidates), a number of samples are completed using Equa-

tion 2.4 with α = 1.0. The cost of the best of these samples is used as the estimate.

In line 14 of Algorithm 2, we reduce the set of partial solutions to consist of θ solu-

tions and we make this choice greedily based on the estimate. Stochastic sampling

provides two estimates here (1) violations of the time windows and (2) estimate of

solution quality. θ solutions are chosen greedily by first considering feasibility and

then solution quality.

We see from this study that Beam-ACO based on stochastic sampling can be

applied effectively to problems where ACO may be applied. Furthermore, the results

obtained here are much improved compared to plain ACO and other metaheuristics.

A critical aspect of the algorithm is its ability to deal with hard constraints and

therefore more effective on tightly constrained COPs than ACO. Beam-ACO is aided

by the estimates obtained from stochastic sampling.

2.3 Customizing ACO and Beam-ACO

Often, customizing ACO or Beam-ACO for a problem can be problematic. In fact,

metaheuristics in general, can be difficult to customize but once this is done they

can be very effective. The problems based on the TSP discussed earlier have been

given a lot of attention and the results clearly show that metaheuristics are useful

for these problems. Here, we take a step further and show that metaheuristics

can be effective for other types of problems. Through these studies we confirm

metaheuristics’ ability to learn orders and that they can also effectively incorporate

problem-specific heuristics in their learning schemes.

We consider the example of strip packing (Martello, Monaci and Vigo, 2003)

where (Hopper and Turton, 2001) suggested that order learning by metaheuristics

may be ineffective for this problem. By carefully customizing ACO for this problem,

we show that this is not the case and that order learning can in fact lead to improved

packings. Details of the complete study can be found in (Thiruvady, Meyer and
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Ernst, 2008). We briefly describe the problem, outline the results and discuss main

conclusions here.

2.3.1 Customizing ACO

The strip packing problem (SPP) requires the placement of a number of items on

a strip of fixed width but infinite height (Martello et al., 2003). Here rectangles

of fixed width and height must be placed on the strip without overlapping and the

aim is to minimize the height of the strip. The items can be rotated by 90◦ to

potentially achieve a more dense packing. Guillotineable packings (Dychhoff, 1990)

are not required. This problem was shown to be NP-complete (Fowler, Paterson

and Tanimoto, 1981) but like other similar problems in operations research, a simple

heuristic is effective in solving it (Hopper and Turton, 2001).

To place items, (Hopper and Turton, 2001) showed that bottom-left fill heuristic

(BLF) is the most effective method. The BLF decoder works as follows. Starting

at the bottom-left of the strip the decoder moves right checking potential locations

that an item could fill. If no suitable location is found the decoder increments the

height by one, starts from the left and moves right attempting to place the item.

Figure 2.3 shows the candidate location for an item to be placed. Now two items

are placed. The first item (item 5) is placed in the lowest possible location on the

strip while the second item (item 6) is able to fill the gap with this scheme.

Figure 2.3: The BLF placement heuristic; The strip on the left shows a partial
layout with BLF placement points, the small circles show candidate locations for
the next item; Two items are placed according to the BLF placement scheme. This
example demonstrates how BLF is able to effectively fill the gap that was created
by item 5.

The variant chosen for this study was ACS. The procedure at a high-level is to

construct a number of permutations using the pheromone trails and then pack the

items according to their orders using the BLF heuristic. The permutation for the

best placement is used to update the pheromones and the procedure repeats for a

number of iterations, see (Thiruvady et al., 2008) for these details.
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With respect to learning there are two separate aspects that can be considered:

(1) orders and (2) rotations. Thus we conducted experiments consisting of the learn-

ing of item order, item order and rotations independently, item order and rotations

dependent on an item’s position in the order and item order and attempting both

rotations.

Results and Discussion

The full set of results are available in Appendix B.1 and are summarized here. Learn-

ing orders are always advantageous over no learning. This is true in the cases where

both orientations are attempted and also with learning orientations. Surprisingly,

learning orientation on its own does not seem to benefit the placement generally. For

the smallest instances it seems to make a difference but it fails to make a difference

with larger instances. In Appendix B.2 we see an example of a packing on a large

problem obtained with and without learning. Clearly, learning has a significant role.

Comparing with other metaheuristics implemented by (Hopper and Turton,

2001) shows that ACO outperforms the other methods. Furthermore, the SPP

problem is solved by a two phase algorithm where the learned order is mapped to

the strip with the BLF heuristic. Thus, this demonstrates that ACO may be effec-

tively customized for order learning problems and can be effectively coupled with

non-standard heuristics (i.e., heuristics that are not incorporated within the solution

construction). This shows that ACO can be further extended to test it with other

problems consisting of similar characteristics. The implementation steps of ACO

may be summarized as follows

• Choose an ACO variant

• Determine a learning model, i.e. pheromone trails

• Identify static heuristics which may be useful when constructing solutions

• Identify “ideal” parameter settings

– Use previous studies as a guide and/or

– Perform parametric optimization

• Identify convergence detection method if restarts are being used

2.3.2 Customizing Beam Search

To demonstrate beam search we consider an application from photo album lay-

out (Atkins, 2008). The layout of photos effectively on web pages has received some

attention. Usually, template-based solutions are provided where a user can place a
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number of images. This can lead to problems when a user requires a large number of

photos to be placed. The main issue is that a large number of alternative templates

are plausible but a limited arbitrarily by the library providing them. The result is

that the user has to settle for placements where photos may have an unexpected

area and aspect ratio. A solution to this problem was proposed by Atkins (2008)

using the Blocked Recursive Image Composition (BRIC) algorithm. This algorithm

incrementally adds photos to an existing layout and selects placements which are

closest to the area required by the user and maintain the aspect ratios of the photos.

In the original version of the problem, photos must be spaced a minimum distance

apart and they must have borders. We relax these constraints here since we observe

that several layouts consist of very small photos with the borders and spacing over-

riding a significant amount of space occupied by the photos. This has the potential

disadvantage that some photos may not be placed on the canvas. However, we argue

that a placement where most photos fit their ideal areas is preferable to a placements

where lot of small photos are placed where only the borders can be seen.

BRIC is implemented as a beam search. The basic idea here is that photos are

added incrementally and at each stage a number of feasible layouts are constructed

by testing all possible locations where the photo can be included. Of these, a limited

number of layouts (partial solutions) are chosen based on a score of the current layout

to progress with the search. The score (details provided later) is a measure of how

close the the current photo areas are compared to the user specified photo areas.

The current photos are required to fill the whole canvas and this results in a partial

solution.

The above procedure effectively represents a beam search (also see C.1). Consider

Algorithm 2. At line 5-18 we incrementally add photos to the layout. ProduceChil-

dren(.) determines all possible feasible children and m of these are placed in the

beam at line 16 of the algorithm (Reduce(.)). The additional steps at lines 8-14 in

the algorithm are unused in this algorithm.

The following score is computed for the partial layout as follows. Given the

suggested relative areas of the n photos a1, . . . , an, ideal area estimate for a photo i

can be computed as:

âi =
H ×W × ai∑n

k=1 ak
(2.10)

where H and W are the height and width of the canvas, respectively. If the actual

photo areas are represented as o1, . . . , on, then the score for each photo can be

computed as:

si = min(oi/âi, 1.0) (2.11)

Therefore, this score imposes a penalty if the photo is smaller than its relative area

but not if it is larger. The final score is calculated as the sum of the individual photo
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scores:

S =
n∑
k=1

sk (2.12)

Atkins (2008), further modify the score in the following way. Firstly, they take

into account any borders or spacing between photos. Secondly, further penalize a

photo if its actual area is less than half the estimated area and thirdly, to impose

a further penalty - a function of the number of photos that have a score less than

0.25. These last two modifications ensure that the layout does not consist of very

small photos.

Adding a Learning Component

The above BRIC algorithm can be extended to include a learning component. ACO

can be used for this purpose and over here we choose to implement in as aMMAS

in the hyper-cube framework, see (Thiruvady et al., 2009) for the general algorithm.

We refer to it as BRIC-ACO from now onwards. Algorithm 2 is also a plausible

framework for BRIC-ACO. From lines 5-18, photos are incrementally added to the

layout. ProduceChildren(.) generates all feasible solutions by testing if a photo can

be inserted at all possible locations on the tree. From amongst these, θ×µ solutions

are selected using pheromones. Now the photos are sorted by score and the best

θ are selected greedily to continue the search (line 16). Alternatively, the greedy

selection and pheromone selection can be swapped and we test this version of the

algorithm. In fact, the second alternative is more appropriate given that the score

is already a proven estimate and the pheromone may initially eliminate promising

solutions with high scores. Therefore, we stick with the second scheme of selection

for the rest of this study. The order learning schemes in conjunction with BRIC are

discussed in detail in Appendix C.2.

Experiments, Results and Discussion

Complete results, settings and details of the datasets are given in Appendix C.3.

These results show that the BRIC algorithm with random orders is already very

good. In fact, for all problems up to size 30, all the algorithms perform at similar

levels, nearly always finding the optimal. However, for larger instances (≥ 30 pho-

tos) BRIC-ACO is the best algorithm demonstrating the usefulness of the learning

component. For these instances, even without learning, some randomness improves

the solution quality. That is, BRIC-ACO-NL does not fix an order at the beginning

of an iteration unlike BRIC. Therefore, the solutions in the beam are likely to be

more varied resulting in the improvement over the plain BRIC algorithm.
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The ACO component of Beam-ACO requires the same steps as outlined in Sec-

tion 2.3.1. However, the steps involved with Beam search may be summarized as

follows

• Determine selection scheme, i.e., pheromone selection followed by the estimate

or vice versa

• Identify static heuristics which may be useful when constructing solutions

• Identify estimates, problem specific bounds or stochastic sampling

• Identify “ideal” parameter settings

– Use previous studies as a guide and/or

– Perform parametric optimization

• Determine greedy or probabilistic selection scheme for estimates

2.4 Conclusion

This section on learning metaheuristics lays the foundation for the first set of al-

gorithms to be used in this thesis. ACO and Beam-ACO were the metaheuristics

reviewed in depth. We discussed ACO first and compared to other metaheuris-

tics, ACO is chosen since (1) it is proven, (2) more effective in practical settings

than methods like BOA, (3) straightforward to integrate problem specific heuristics.

Additionally, when applying ACO we have discussed two frequently used options in

practice. The studies in the following chapters mainly useMMAS but comparisons

to ACS are made where it is deemed appropriate. The aim here is not to determine

the most effective variant but to examine the effectiveness of the integrations with

constraint programming. Thus, while improvements in the ACO components can

be found, these improvements can be expected to extend into the respective hybrids

without a major difference is the constraint programming component.

The second metaheuristic discussed was beam search. This approach combined

with ACO - Beam-ACO - provides a way to enhance ACO in terms of flexibility and

performance. Through an example we show how beam search differs from ACO and

how it can more effectively exploit optimal regions. Apart from being an effective

search method, beam search has the property that solutions are inter-dependent and

are constructed in parallel. This allows for the exchange of information between

the solutions while they are constructed as opposed to plain ACO. Often, identical

solutions may be built by ACO (especially when pheromones converge). This can be

avoided by using beam search to ensure that all solutions built in a single iteration
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are unique. This aspect of beam search proves extremely useful when combined with

constraint programming as will be seen in the next chapter.

We have demonstrated here that ACO and Beam-ACO can be effectively cus-

tomized to problems based on order learning. This is particularly important in

the context of this thesis since all three case studies considered can be represented

by permutations and will thus be based on learning sequences or orders. Hence,

customizing ACO/Beam-ACO for these problems is relatively straightforward.
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Constraint Programming

Constraint programming refers to the set of techniques for solving satisfaction and

optimization problems (Marriott and Stuckey, 1998; Apt, 2003; Hentenryck, 1989).

One of the first examples of a system using constraints was sketch pad (Sutherland,

1964). Since then, the development of CP started in the 1970’s amongst in the AI

community (Apt, 2003). They were the first to identify concepts such as consistency

and specific algorithms aimed at solving them. The first CP systems originated in

the 1980’s (Borning, 1981; Steele, 1980) and were an extension of logic programming

by incorporating the idea of constraints. This lead to the development of constraint

logic programming. Independently of CP, search methods such as backtracking were

already in use. Combining these with CP specific algorithms, CP systems became

diverse, flexible and powerful.

At the heart of CP lie variables, domains and constraints. A problem is speci-

fied by a number of variables with associated domains and relations or constraints

between the variables. The constraints are enforced by means of a constraint solver

invoked by the program and all the constraints are placed in a constraint store. The

solver analyses the constraints to enforce the implied restrictions. In doing so it

provides at least two services to the program. First, it determines whether a new

constraint is compatible with the already existing ones and reports success in the

case that it is so. If not the solver reports failure. Secondly, given success, the do-

mains of the variables are automatically checked and reduced to be consistent with

the currently enforced constraints.

CP systems are very flexible in that they can deal with domain specific problems

such as solving linear systems of equations or generic problems with constraints.

In the case of linear systems, domain specific algorithms are usually applied. On

the other hand, generic problems are usually modeled with CP specific algorithms

designed to reduce the search space and possibly with CP specific search methods.

CP also has a strong theoretical foundation and the ease of specifying CP programs

and their flexibility make it an increasingly popular tool.

33
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The program can interface with the solver in several ways. For example, a new

restriction can be imposed or posted to the solver or a variable can explicitly be

assigned a value. This is called a labeling step. The solver might reject such a

labeling in case the value is not compatible with the constraints in the domain of

the variable which will result in a state of failure. This is also the case with the

constraints held in the solver. If consistent with the constraints, the post or labeling

will possibly result in changes to the domains of the variables. The solver can also be

queried by the program, e.g., to obtain the associated domain values of a variable.

In this thesis, only CP over finite domains is considered and discussed in the next

section.

3.1 Finite Domain CP

A branch of CP is finite domain constraint programming (FDCP1). This is a method

for solving combinatorial problems (Marriott and Stuckey, 1998) where the domains

associated with variables are finite sets (e.g., boolean or integer constraints). These

types of problems are also referred to as constraint satisfaction problems (CSPs) if

the aim is to find a solution that satisfies all the constraints of the problem rather

than to optimize an objective function. Determining if a solution exists for this class

of problems is generally NP-hard. Therefore, exact/complete solution approaches,

like integer programming, are generally very slow. Many real world problems such as

scheduling, planning, packing, etc. involve choosing from a finite set of possibilities

and can therefore be tackled with FDCP.

There are two phases in solving CSP. In the first phase the constraint model is

defined and the initial constraints are posted. A constraint solver keeps track of the

current variables and their domains in the constraint store for the problem. The

second phase consists of assigning values to variables (labeling). Variable domains

are updated by the constraint solver when an action (posting new constraints or

labeling variables) is initiated. An action results in a new state for the solver, either

success if the action is consistent with the constraints in the solver or failure if the

action results in an invalid state. The two phases are described in detail in the

following sections.

3.1.1 The CP model

In the first phase, the CP model is initialized with the variables and constraints.

A propagation algorithm or propagator is invoked here to ensure consistency of the

domains of the variables. These algorithms are called solvers and since solving a CSP

1The rest of this thesis will use CP and FDCP interchangeably unless otherwise specified.
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Program
X,Y = {1,2,...10}

X > 3
Y > X
....
....

Store

Propagators

CP solver

X

4...........10

Y

5..........10

X = {1,...,10}
Y = {1,...,10}

X > 3
Y > X

Success

X > 3
Y > 4

Success

Success

Post X,Y = {1,...,10}

Post X > 3, Y > X

Success

Figure 3.1: The interface between the program and the CP solver. Here, the program
requests two variables X, Y ∈ {1, . . . , 10}. This is set up by the solver and the state
is placed in the store. The program now posts the constraints X > 3 and Y > X.
These constraints are used by the propagators to infer the Y > 4 and this is applied
to the variables in the store updating their domains. The solver returns success to
the program to show that the actions led to consistent domains for he variables.
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is NP-hard they are necessarily incomplete. One class of solvers called consistency

algorithms work by reducing the domains of the variables and thereby transforming

the original CSP to an equivalent one. The new CSP consists of the same solution

set as the old one and if it is determined that the new CSP is not satisfiable then

the original CSP is also not satisfiable.

See Figure 3.1. Here, we see an example of a program that interfaces with the

CP solver. First, two variables X, Y ∈ {1, . . . , 10} are defined by the program and

posted to the solver. These variables and their associated domains are placed in the

store. Since instantiating these variables was successful, the solver lets the program

know that the variables were defined. Now further constraints may be posted to

the solver which may invoke one or more propagators to reduce the domains of the

variables or impose new constraints. In the example we see that X > 3 and Y > X

are posted to the solver. This is passed to the propagators which infer Y > 4. The

constraints X > 3 and Y > 4 are applied to the store thereby reducing the domains

of the the variables.

Algorithm 3 A simple consistency solver (Marriott & Stuckey, 1998)

1: input: C, D
2: D̂ = D
3: // Node consistency
4: for i = 1 to |C| do
5: if v(ci) = 1 then
6: x = v(ci)
7: D̂(x) = {d ∈ D(x)|D(x)← d solves ci}
8: end if
9: end for

10: // Arc consistency
11: repeat
12: K = D̂
13: for i = 1 to |C| do
14: if v(ci) = 2 then
15: x1 = v1(ci)
16: x2 = v2(ci)
17: D̂(x1) = {d1 ∈ D̂(x1)| for some d2 ∈ D̂(x2), x1 ← d1∧x2 ← d2, solves ci}
18: D̂(x2) = {d2 ∈ D̂(x2)| for some d1 ∈ D̂(x1), x1 ← d1∧x2 ← d2, solves ci}
19: end if
20: end for
21: until K = D̂
22: if D̂ = invalid domain then
23: return false
24: else if D̂ = valuation then
25: return true
26: else
27: return unknown
28: end if
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The solver works as follows. Each primitive constraint (ci) is considered and

given the domain of a variable, the domains of all other variables are reduced or

made “consistent”. This process is repeated for all constraints and could possibly

result in a failure where the CSP can not be solved or a valuation where each variable

is assigned to a single value. A simple solver can be built from a two step algorithm

that employs node consistency followed by arc consistency (see Algorithm 3). In

node consistency, all constraints involving only a single variable (v(ci) = 1) are

checked to ensure that their domain values satisfy the constraint (lines 4−9). C are

the set of constraints and D are the domains of the variables. At the end of the first

part (line 9), D̂ has the reduced domain values. This if followed by arc consistency

(lines 11 − 21) which is applied to all constraints with two variables (v(ci) = 2)

and require that for all domain values for the first variable, some domain value

of the second variable will result in a feasible solution to the constraint (line 17).

Consistency is also enforced from the second variable to the first (line 18). Again D̂

results in the set of pruned domains.

For constraints with more than two variables, methods such as hyper-arc consis-

tency can be employed, however, the problem of identifying if a primitive constraint

is hyper-arc consistent is NP-hard (Marriott and Stuckey, 1998). Fortunately, in

the case of arithmetic constraints, bounds consistency can be used for more than

two variables. Arithmetic CSPs are the most common type CSP, and often, those

that are not can be converted to an integer CSP by requiring integral domains. A

primitive constraint c is bounds consistent if (Marriott and Stuckey, 1998)

• ∀x ∈ {x1, . . . , xn} : ∀y 6= x, {min(dyj) ≤ rj ≤ max(dyj)}∧{x← min(dx), y1 ←
r1, . . . , yn ← rn} solves c and

• ∀x ∈ {x1, . . . , xn} : ∀y 6= x, {min(d̂yj) ≤ r̂j ≤ max(d̂yj)}∧{x← max(dx), y1 ←
r̂1, . . . , yn ← r̂n} solves c

The first point specifies that there exist real values rj in the range of the values of

each variable yj such that this variable can be bound to this value, and x being bound

to its minimum domain value, results in a solution to the constraint. The second

point is similar to the first except that x being bound to its largest domain value

results in a solution to the problem. Alternatively, either min(xj) or max(xj) and

all constraints can be satisfied by assigning values to all other yi in their respective

domains. The arithmetic CSP is then said to be bounds consistent if all the primitive

constraints are bounds consistent. For a more complete description of CSP solvers

refer to (Marriott and Stuckey, 1998).
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3.1.2 Labeling

Once the CP model is defined, a propagator is triggered which will apply the con-

sistency algorithms. This results in the updating of the domains of the variables

and the solver is now in an initial state. Here, we may post a constraint to assign a

value to a variable which is also called labeling. If all the variables are bound at the

initial state then there is no labeling phase required and a solution to the problem

is returned. Otherwise, variables are labeled while the solver does not discover a

state of failure. Typically, a backtracking search is the simplest way this can be

implemented. A variable is bound to a value, the propagator is invoked, and then

another variable is bound. This process continues until a solution is found or the

solver state results in failure. In the latter case the algorithm would backtrack to

the previous variable and make a different choice. This process is repeated until a

solution is found or no solution exists.

The choice of which variable to label next is also important. Often in applica-

tions, the variable with the smallest domain is an obvious choice. However, for some

problems labeling variables based on other choices is more effective.2

In the case of optimization problems (e.g. integer optimization), algorithms

from linear/integer programming can be used in combination with CP solvers for

an efficient search. An example is a branch-and-bound search strategy. Let opt be

an algorithm which is an optimizer for real numbers. Let opt find a solution to the

original problem with the integrality constraints relaxed. If the resulting solution is

integral then the solution may be returned without any further search. Otherwise,

we recursively pick a non-integral variable (say x = v) and search two separate

problems (x ≥ dde ∧ x ≥ bdc ∧ C) where C are the constraints. While searching,

bounds obtained from the relaxed version of the problem can be used to prematurely

stop exploring a path of the search tree.

Consider the previous example from Figure 3.1. The program posts X, Y ∈
{1, . . . , 10} and two constraints X > 3 and Y > X. Now we attempt to label X.

The labeling procedure is shown in Figure 3.2. Observing successive labelings from

left to right, X = 3 is first posted. This is not consistent with the domain of X and

is rejected by the solver. The program then requests that the domains be reset and

then attempts X = 5 which succeeds. The propagators infer Y > 5 and the domain

of Y is updated accordingly.

2For example, consider the N -queens problem which is a satisfaction problem where N queens
have to be placed on a an N × N chess board such that no two queens can capture each other.
Here a ‘middle’ variable is a better choice to instantiate first (Marriott and Stuckey, 1998).
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3.1.3 High-Level constraints

Several constraints are considered as high-level in that they consist of a number sim-

ilar primitive constraints. When specifying a CP model for a problem, it is generally

useful to use high-level constraints (also called Global constraints) if the model per-

mits it. This is because specialised algorithms for the high-level constraint may be

available which permit additional inference. Furthermore, explicitly specifying each

constraint can be tedious.

For example, consider the following constraint: distinct(X), X = {x1, . . . , xn}.
This constraint is equivalent to xi 6= xj, i 6= j. However, pruning the domains of

the variables can be mapped to the maximal bipartite matching problem (discussed

in Chapter 1) which can be tackled efficiently with flow algorithms (Milano, Ot-

tosson, Refalo and Thorsteinsson, 2001). Furthermore, explicitly specifying these

constraints requires n×(n−1)
2

posts.

Therefore, for the applications in the following chapters, we make use of the

following high-level constraints, possibly using more than one for each problem:

• distinct(X) : ∀xi 6= xj, i 6= j,X = {x1, . . . , xn}. As discussed earlier, this

constraint specifies that all variables must be labeled with different values.

• count(X, d,m) : num(xi = d, i ∈ 1, . . . , n) = m. This constraint specifies that

the number of occurrences of d amongst the variables is exactly equal to m.

• cumulative(S,D,R, l) : ∀t
∑

i|si≤t≤si+di−1 ri ≤ l (Apt, 2003). This constraint

was designed for scheduling problems. For m jobs, the constraint specifies

determines the start times (S = {s1, . . . , sm}) given the durations (D =

{d1, . . . , dm}) and resource consumptions (R = {r1, . . . , rm}) of the tasks. l

is the maximum resource available at a time point t. The constraint specifies

that the resource consumption by all tasks that overlap at any time point must

be no more than l.

• among(X, s, l, h) : l ≤ num{j ∈ {1, . . . , n} | xj = s} ≤ h. This constraint

requires that the number of occurrences of xj = s is less than h and greater

than l.

• sequence(X, s, q, l, h):
∧|x|−q
i=0 among(〈xi, . . . , xi+q−1〉, s, l, h) (Gecode, 2010). Us-

ing the among(.) constraint, the sequence constraint enforces this constraint

for every subsequence of X of size q.
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3.1.4 Choice of CP Solvers

Constraint solvers for combinatorial problems are commercially and freely available

(ILOG, 2007; Carlsson, Ottosson and Carlson, 1997; Gecode, 2010). In order to

settle on an appropriate solver we considered the following aspects:

• Up-to-date: the solvers propagation algorithms are state-of-the-art with strong

propagation

• Reliable: has been tested by other users without problems

• High-level constraints: includes an implementation for commonly occurring

high-level constraints (e.g. distinct) and include specialized high-level con-

straints that may be needed for specific applications (e.g. sequence for car

sequencing)

• Copying solver state: this is critical to the performance of CP-Beam-ACO (see

next chapter) and needs to be implemented efficiently

• Interface: can interface to the solver libraries in a straightforward manner

• Statistics: can obtain statistics over propagation steps, execution times, label-

ings, etc.

Given the above criteria, the CLPFD library of Sicstus and Gecode were used in

this thesis. The ILOG solver was not considered since all the algorithms tested here

involve a stochastic component and proving the effectiveness of these algorithms

is achieved through a large number of runs for each algorithm on each instance.

To obtain these results on many instances requires that these runs be executed in

parallel on a cluster or several clusters of computers. This would involve a large

number of commercial licenses which were infeasible to obtain.

Initially, Sicstus was the preferred solver since the original work on combining

ACO and CP (Meyer and Ernst, 2004) used this solver effectively applying the

high level scheduling constraints.3 However, this solver has the drawback copying

a complete solver state efficiently was not possible. This provided an impediment

to the main algorithm suggested in this thesis (CP-Beam-ACO), i.e., constructing

solutions in parallel and moving between parts of the search tree is not possible.

To achieve this, effective copying of solver sates is absolutely necessary and Gecode

provided this mechanism in addition to making available all the relevant high level

constraints needed that are described in the previous section. Therefore, all the

experiments and associated results in this thesis were obtained with the Gecode CP

solver.

3serialized(·) in sicstus equivalent to cumulative(·).
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3.2 Conclusion

Constraint programming is an effective method to tackle tightly constrained prob-

lems. In particular, finite domain constraints can be used to effectively with real

world problems, since a large number of these problems consist of constraints with

discrete components. This chapter provided on overview of how a problem can be

solved with CP using finite domains including modelling the problem. We have

also provided some insight into the inner workings of CP by describing some of the

consistency algorithms briefly. High-level algorithms were also discussed.

An important aspect of CP is that it is declarative, allowing a high-level de-

scription of the problem. Furthermore, a problem that is modeled using high-level

constraints amongst others, can achieve significantly improved results with respect

to feasibility. A possible drawback, however, is that for large search spaces CP on its

own can require far too much effort in its search component. Given these aspects,

an effective integration can make use of CP to find feasibility on tightly constrained

problems. Such integrations are discussed in the next chapter.



Chapter 4

CP-Beam-ACO

Often, COPs may have characteristics which are hard to solve by a single class of

techniques. Thus, combining methods from different classes provides a mechanism

to be able to deal with these problems. Given the potential of hybrid methods,

they have been given a lot of attention recently and the growing number of studies

with hybrid methods suggest that they will be an effective and frequently utilized

technique in the future (Blum, Puchinger, Raidl and Roli, 2010; Puchinger and

Raidl, 2005).

Developing a hybrid algorithm may not be straightforward. The combinations

can be implemented in several ways and designing the “best” hybrid can be diffi-

cult. In this chapter we discuss several studies which show how hybrids may be

constructed and we also discuss the frameworks into which hybrid methods have

been classified.

The focus in this thesis is on COPs with non-trivial hard constraints and we aim

to tackle these problems with ACO and CP and their integration. Thus we review

hybrids of metahuristics and exact methods. Additionally, we suggest a further

hybrid with beam search, motivating the need to discuss hybrid metahuristics.

As we pointed out in Chapter 1, metaheuristics deal with non-trivial hard con-

straints poorly. The approaches usually build solutions to these problems by relaxing

constraints, repairing solutions which violate constraints, or using multi-phase tech-

niques. Relaxation or penalty methods build solutions which are allowed to violate

constraints. Typically, the original objective is modified to include the cost of the

violations where a solution to the problem is built by mininmizing a function of the

violations. Repair methods also first build infeasible solutions. These solutions are

examined and modified or re-built to obtain feasible solutions. Finally, multi-phase

methods build solutions in two phases. The first is to bias the solution construction

into feasible regions until feasible solutions are found and the second phase to find

optimal areas in the feasible regions found.

43
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In all the cases discussed above it is often a tedious task to try to build feasible

solutions. Furthermore, the methods developed are problem specific and may not

easily extend to other problem types. The obvious advantages of using a CP-based

hybrid is that it is problem independent. CP allows the modeller to specify con-

straints at a high-level independent of the specific problem. Hence, CP provides a

relatively simple and effective way to model the constraint of a problem and the

resulting framework may be applied to several problem types. This CP-ACO algo-

rithm is the basis of this thesis and is reviewed in detail followed by a discussion of

the CP-Beam-ACO hybrid.

4.1 Hybrids of Metaheuristics and Exact Meth-

ods

Puchinger & Raidl (2005) classify hybrid techniques into collaborative and integra-

tive combinations. The aim of these hybrids is to either improve the run-time of the

algorithm when solving a problem or improve the solutions that are found given the

same time-frame.

The first combination is one where both algorithms exchange information but ex-

ecute independent of each other in sequence (Clements, Crawford, Joslin, Nemhauser,

Puttlitz and Savelsbergh, 1997; Applegate, Bixby, Chvátal and Cook, 1998; Plateau,

Tachat and Tolla, 2002; Klau et al., 2004) or in parallel (Talukdar et al., 1998; Den-

zinger and Offermann, 1999). In sequential integrations, the metaheuristic or exact

method is used as an initialization or pre-processing to provide a point at which

the other method may be used. Clements et al. (1997) tackle a production-line

scheduling problem. Initially, they use squeaky wheel optimization (Joslin and

Clements, 1998) to generate feasible solutions and also include random component

to generate diverse solutions. This is followed by a second phase where a column

generation approach is used to improve the solutions. Applegate et al. (1998) use

iterated local search first to generate a number of solutions to the TSP. Given these

solutions, the TSP is solved to optimality on the edge set of the solutions found,

hence leading to improved solutions compared to iterated local search on its own.

Klau et al. (2004) tackle the prize-collection steiner tree problem in a similar fashion

by first using a memetic algorithm followed by integer programming. Plateau et al.

(2002) make use of an interior point algorithm to find initial solutions to a multi-

constrained knapsack problem. This is used to provide the initial population for a

path-relinking algorithm. Puchinger & Raidl (2005) also discuss other approaches

and we refer the reader to this survey to get further details.
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Integrations in parallel are less common but have also shown to be useful. Taluk-

dar et al. (1998) present a framework for such integrations as follows. They consider

an agent-based approach where each agent is an optimization algorithm. These

agents work on shared memory which consist of solutions to the problem, a re-

laxation (super class) or subclass. Their actions can result in adding, deleting or

altering solutions to each class of the problem. Denzinger and Offerman (1999) also

present a similar approach where they show they effectiveness of genetic algorithm

and branch & bound search on a job-shop scheduling problem.

The second type of combination is when one of the algorithms (a slave) is built

into the other (master). Examples of exact techniques incorporated into meta-

heuristics are (Chu and Beasley, 1998; Raidl, 1998; Meyer and Ernst, 2004). Chu &

Beasley (1998) and Raild (1998) tackle the multiconstrained knapsack problem by

solving relaxed problems within a genetic algorithm. Here, the relaxed problems are

solved exactly and they are used to guide a neighbourhood search, mutation, local

improvement, etc. or combinations of these. Exact methods may also be used to ex-

plore large neighbourhoods exactly (Thompson and Psaraftis, 1993; Burke, Cowling

and Keuthen, 2001; Congram, 2000; Puchinger, Raidl and Koller, 2004). Burke et

al. (2001), for example, tackle the ATSP with a local and variable neighbourhood

search and exhaustively explore the neighbourhood in the local search component.

Meyer & Ernst (2004) examine the CP with ACO integration which is discussed in

detail later.

Studies incorporating metaheuristics into exact algorithms include (Woodruff,

1999; Filho and Lorena, 2000; French, Robinson and M.Wilson, 2001; Fischetti and

Lodi, 2003; Kostikas and Fragakis, 2004; Puchinger and Raidl, 2004; Danna, Roth-

berg and Pape, n.d.). Woodruff et al. (1999) use tabu search within a branch &

bound search to obtain bounds or an incumbent solution.1 Filho et al. (2000) and

Puchinger and Raidl (2004) use metaheuristics and heuristics within branch-and-cut

(dynamic separation of cutting planes) and branch-and-price (pricing of columns)

algorithms. Guiding branch & bound searches with metaheuristics has also been

attempted, for example, by French et al. (2001) and Kostikas et al. (2004). They

use genetic algorithms and genetic programming, respectively, to guide the node

selection in the branch & bound trees. Finally, Puchinger & Raidl (2004) dis-

cuss approaches where a neighbourhood search around an incumbent solution is

attempted before the traditional node selection strategy of branch & bound. The

initial neighbourhood search is itself done with a branch & bound search as opposed

to a metaheuristic, however, this can be viewed as a heuristic approach. Fischetti

& Lodi (2003) and Danna et al. (2005) are examples of such approaches.

1Current best feasible solution
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4.2 Hybrid Metaheuristics

There are various categorizations of metaheuristics. Here, following (Blum et al.,

2010) we broadly discuss metaheuristics incorporated within other metaheuristics,

metaheuristics integrated with tree search methods, metaheuristics and CP and

other hybrids.

Metaheuristics are often combined with heuristics and possibly combined with

other metaheuristics. In this class of algorithms, typically, local search algorithms

may be used within a metaheuristic framework (see for example (Krasnogor and

Smith, 2005)). Local search methods are essentially intensification algorithms and

metaheuristics are effective at diversification. Therefore, the resulting hybrids make

use of the complementary advantages of both methods leading to more effective

searches where the metaheuristics explore large areas of the search space and the

local search identifies the best solutions in those areas quickly.

Integrations with tree search methods can be effective where metaheuristics are

constructive in nature. As we saw in Chapter 2, ACO can be viewed as a tree

search method and a solution can be thought of as a path from the root to a leaf.

This leads to integrations with branch & bound methods or derivatives of branch

& bound methods (see for example (Blum, 2005)). Furthermore, if efficient integer

programming or CP formulations can be devised, hybrids where the metaheuristic

makes use of the exact method can be effective by using powerful solvers to guide the

search. Metaheuristics may also be used to guide a search within an exact method.

For example, (Rothberg, 2007) suggested a branch & cut algorithm which makes use

of an evolutionary algorithm at regular intervals as a heuristic to improve solution

quality.

Integrations with metaheuristics and CP include (Meyer and Ernst, 2004; Backer,

Furnon, Shaw, Kilby and Prosser, 2000; Shaw, Backer and Furnon, 2002; Focacci,

Laburthe and Lodi, 2001). These integrations can be approached in different ways

as follows. The first approach is collaborative, i.e., first execute one algorithm and

use the solutions generated to guide the second algorithm. A second method may

use CP to effectively explore the neighbourhood of a solution, which is typically

useful with local search. Thirdly, the metaheuristic’s search may be guided using

CP, leading to feasible regions of the search space. Lastly, during the CP search a

metaheuristic may serve to improve a solution.

Another category of hybrids include those which relax some of the problem con-

straints and then make use of other methods to efficient solve the relaxed prob-

lem (Vasquez and Vimont, 2005; Raidl and Feltl, 2004). This is similar to integer

programming methods, which when integrality constraints are relaxed, can obtain

bounds via the linear programming solution for their search. Raidl and Feltl (2004)
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make use of such a method to obtain an initial population of integral solutions by

using a linear programming relaxation for the generalized assignment problem.

Finally, metaheuristic integrations with dynamic programming have proved effec-

tive (Blum and Blesa, 2008). For example, when large neighbourhoods (exponential

in size) have to be dealt with, dynamic programming methods can sometimes ex-

plore such search spaces in polynomial time. The study by Blum & Blesa (2008)

tackles the k-cardinality tree problem. Here, a metaheuristic is used to generate a

group of solution from which dynamic programming is used to determine the best

solution amongst these.

We made the point earlier that metaheuristic-CP integrations can be effective

hybrids. This is particularly true for COPs with non-trivial hard constraints. How

such hybrids can be developed are discussed next and future chapters show how

they can be customized for three separate problems.

4.3 CP-ACO

Metaheuristics deal with hard constraints poorly and most traditional methods tend

to be problem specific. Since many real world problems are subject to such con-

straints, metaheuristics can benefit from using CP to effectively deal with non-trivial

hard constraints to build feasible solutions to problems. One of the first examples

of such an integration was to use CP with a genetic algorithm (Barnier and Bris-

set, 1998). CP was integrated with the genetic algorithm where new solutions are

generated. For example, new individuals (solutions) that are generated after ap-

plying crossover are examined by the CP solver for feasibility. While this proves

effective, the resulting hybrid possibly requires a large computational effort when

determining feasibility. In fact, this study imposes a time limit on propagation after

which solutions are regarded as having low fitness. The alternative of constructive

metaheuristics provide a straightforward way to deal with CP and can often deter-

mine early on if a solution, when completed, will be feasible. Meyer & Ernst (2004)

showed that this can be effectively done with ACO and CP and the hybrid was

particularly effective on a tightly constrained COP.

The problem (Meyer and Ernst, 2004) tackled was a single machine job schedul-

ing with sequence dependent setup times.2 The problem consists of non-trivial hard

constraints in release times and due times associated with each job. The objective

was to minimize makespan or the completion time of the last job in the sequence.

It can also be viewed as minimizing the cumulative setup times while satisfying the

hard constraints. Typically, ACO use heuristics such as earliest due date to find

feasible solutions followed by shortest setup times to find optimal solutions. CP on

2See Chapter 5.1 for the formal definition of the problem.
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Algorithm 4 Solution construction for ACO with CP

1: input: A problem instance
2: π = ∅
3: failed = false
4: while i ≤ n ∧ failed = false do
5: feasible = false
6: π = π, D = domain(πi)
7: // single level backtracking
8: while feasible = false ∧ D 6= ∅ do
9: j = select component(D, T )

10: feasible = post(πi = j)
11: D ← D \ j
12: end while
13: if feasible = true then
14: πi = πi
15: else
16: failed = true
17: end if
18: end while
19: output: a feasible solution π or null

the other hand only allows constructing feasible solutions and using CP within ACO

allows the algorithm to focus on optimizing the schedules. The results show that

for smaller or less tightly constrained problems, ACO with heuristics are sufficient.

However, when the problem sizes get larger and/or more tightly constrained then

CP-ACO integration is the preferred option.

The study above is an example of the CP-ACO integration for optimization

problems with constraints. CSPs have also been explored with a similar integration

recently (Khichane, Albert and Solnon, 2008). They considered car sequencing and

a very similar algorithm to above CP-ACO hybrid was proposed. This is a pure

satisfaction problem, however, and Kichane et al. (2008) showed that ACO can be

used to improve a pure CP approach to more effectively identify feasible sequences.

Meyer & Ernst (2004) showed how ACO can be easily extended to use CP in its

solution construction. The algorithm is shown in Algorithm 4. Lines 4 − 18 in the

algorithm label each variable sequentially. At each variable, single level backtracking

is used (lines 8 − 12) to determine a value that is consistent with the solver. The

domain value d is initially picked using pheromones (see the previous Chapter) and

tested by the solver for feasibility (lines 9, 10). The domain value tested is removed

from the domain of the variable in line 9. If feasible, the variable is labeled otherwise

the procedure continues until a valid value is found or the domain of the variable

becomes empty (D(i) 6= ∅). If a value is found then the process continues to the

next variable and, otherwise, terminates with infeasibility (lines 13− 17).
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Figure 4.1: CP-ACO as a tree search. Node 0 is the root of the tree where the
solution construction starts. The first variable is represented at level 1. In this
example, two ants are constructing solutions independently and have chosen x1 =
2, π1 = {2, . . .} and x1 = 4, π2 = {4, . . .}, where the index represents a variable. The
figure on top shows the pheromones and heuristics factors that are considered by
each ant when attempting to select the next component. Additionally, CP eliminates
two nodes (black-filled nodes), one of which was originally chosen by ACO. Given
this information, the first ant chooses x2 = 3, π1 = {2, 3, . . .} and the second ant
selects x2 = 3, π2 = {4, 3, . . .}.
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Figure 4.1 shows CP-ACO as a tree search. Comparing this to ACO in the

previous chapter (Figure 2.1), we see that solutions that cannot lead to feasible

solutions are eliminated as potential candidates. For example, the solution with

π1 = 2 cannot have π2 = 3. Thus, only feasible solutions are selected. This example

shows how the solution constructions of ACO and CP-ACO are potentially very

different for tightly constrained problems.

We have discussed the point earlier that finite domain CP solvers are slow.

Often, satisfying the constraints to obtain a solution is itself an NP-Hard problem.

Therefore, an inherent disadvantage of CP-ACO is that the algorithms require large

run-times to carry out the same number of solution constructions as a basic ACO

algorithm. This was the case as reported by the previous two studies and motivates

the need for faster solvers. The algorithms developed in this thesis aim to show that

this is possible by parallelizing the solution construction via beam search.

4.4 Integrating CP with Beam-ACO

CP-ACO is computationally demanding due to CP propagation. While stronger

CP models will lead to finding feasibility faster, there is a price to pay for this

advantage. CP propagation costs are dependent on the CP model, i.e. stronger

CP models require larger computational effort. In fact, the CP model suggested by

Meyer & Ernst (2004) was complex leading to large execution times for calls to the

CP solver. Thus, repeated calls to the solver for the same propagation is inefficient.

Unfortunately, due to ACOs solution construction scheme, CP-ACO inherits this

inefficiency. The aim is to improve CP-ACO due to the reasons outlined above. The

algorithm may be made more efficient by (1) avoiding duplication by eliminating

repeating CP solver calls or (2) by directing the search effort towards “new” areas

of the search space.

The inefficiency of ACO to be addressed is that there is repeated path generation

where the same solution components are selected during construction. This is sig-

nificantly more so when the pheromones have converged. If the CP solver is invoked

for each newly added component, for repeating solutions, we have a large number of

calls which are effectively carrying out the same work. This can be avoided in two

ways: (1) make sure that all solutions constructed in an iteration are not repetitive

and (2) solutions constructed between iterations are not repeated.

We focus on the first point in this thesis. To achieve this, all solutions within an

iteration must be constructed in parallel. Beam search is one such algorithm that

achieves this as part of the construction process. We have discussed how beam search

and ACO may be combined effectively leading to Beam-ACO. Thus, by integrating
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Algorithm 5 Probabilistic Beam Search with CP

1: input: (θ, µ, T )
2: B0 = {π1 = (), . . . , πθ = ()}
3: t = 0
4: while t < n and |Bt| > 0 do
5: for i ∈ Bt do
6: k ← 0, D = domain(πit+1)
7: while k < µ ∧D 6= ∅ do
8: // π is a copy of πi including a copy of its solver state
9: π = πi

10: j = select component(D, T )
11: feasible = post(πt+1 ← j)
12: if (feasible) then Bt+1 = Bt+1 ∪ π
13: k ← k + 1, D = D \ j
14: end while
15: end for
16: Bt+1 = Reduce(Bt+1, θ)
17: t← t+ 1
18: end while
19: output: argmax{f(π) | π ∈ Bn−1}

CP into Beam-ACO we have an algorithm that avoids re-constructing parts of the

search space and achieves the desired result of efficiently handling CP.

Beam search can be extended to include CP (see Algorithm 5). Here, at the

first stage of extending a partial solution, the choice obtained from sampling the

pheromones is posted to the solver (line 11). If the choice is feasible then this

partial solution is placed in the beam. Otherwise the selection is removed from the

plausible domain values (line 13) and the procedure continues.

This procedure will only be successful if the copying of solver states is relatively

simple. GECODE (Gecode, 2010) provides an effective way to handle this. The

major CP-related advantage of this method is that propagation is only ever done

for new solutions and re-propagation is never done within an iteration. Another

advantage is that if certain partial solutions become infeasible, then other feasible

partial solutions may be placed in the beam. In CP-ACO infeasible solutions are

lost and no new solutions are examined instead.

See Figure 4.2. Compared to beam search, this figure shows that at the initial

stage of selection, we first select using pheromones (τ) and heuristic information (η).

Additionally, some solution extensions may be discarded based on querying the CP

solver. Given the reduced candidates, we now select from them using the estimates

(φ). As this example shows, the search may jump from one (currently feasible) part

of the tree to another, thereby focusing on promising areas of the search space.
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Figure 4.2: Partial construction of a solution using CP-Beam-MMAS. Here, two
ants are constructing solutions in parallel and have chosen x1 = 2, π1 = {2, . . .} and
x1 = 4, π2 = {4, . . .}, where the index represents a variable.The search proceeds sim-
ilar to the Beam-MMAS method except that infeasible solutions are ruled out by
CP at the first stage (black-filled nodes). As this example shows, different solutions
may be obtained compared with Beam-MMAS as a result. The partial solutions
generated have the following components: x2 = 3, π1 = {4, 2, . . .} and the second
ant selects x2 = 3, π2 = {4, 5, . . .}.
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The different stages of selection do not necessarily have to be executed in the

order suggested above. We have used pheromone-based selection first to make use

of learnt information. This could have been replaced by using the estimate to de-

termine the initial candidates. However, computing the estimates is often expensive

compared to the constant time look-up of pheromone information. Thus, it is more

efficient to select initial candidates based on the pheromone information. Addition-

ally, eliminating infeasible solutions is desirable and hence CP is used early on so

that the largest possible candidate set is available to sample from. It does not seem

useful to use CP at the second stage given that the choices made to this point may

already be infeasible. Finally, as we have pointed out earlier, computing the esti-

mates is often expensive and is left to the last stage of selection. Furthermore, using

the pheromones at the second stage is often ineffective as we only obtain information

about the next level of selection. Pheromones favour certain paths and are guided

by the locally best selection which may not be an effective choice across all levels

of the search tree. So choosing to move from one part of the search tree to another

based on the pheromones is unlikely to be effective.

4.4.1 Characteristics of CP-Beam-ACO
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Figure 4.3: This figure demonstrates how the solution construction may proceed for
a when constructing a permutation of five elements. (a) shows that CP-ACO might
generate a large number of identical solutions. (b) shows that CP-Beam-ACO will
force the solutions to be unique.

Beam search integrated with CP-ACO proves to be advantageous in several as-

pects. The main advantage of CP-Beam-ACO is that it forces the solution con-

struction to diversify. Hence, solutions are never repeated within an iteration but

the search is focused around different (optimal) regions. This aspect can be seen in

Figure 4.3 which shows that CP-ACO can repeatedly construct the same solution

whereas CP-Beam-ACO will force the construction to examine new solutions.

A second advantage is that CP-Beam-ACO examines a larger number of solutions

compared to CP-ACO in the same time-frame. The reason for this is that CP-Beam-

ACO examines many more solutions near the end of the search tree where invoking
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the CP solver is relatively quick. Often, it is at the end of the search tree that

solutions may be found to be infeasible and here CP-Beam-ACO creates many more

solutions and hence a lot of quick labelings.

The third advantage of CP-ACO is demonstrated in Figure 4.4. We see that

several solutions may be discarded if they rendered infeasible by invoking the CP

solver. While this may also happen with CP-Beam-ACO, the infeasible solutions

are replaced by copies of a feasible solution. This is particularly effective since the

performance of metaheuristics is dependent the number of solutions sampled and

CP-Beam-ACO potentially generates many more solutions which can be used to

bias the search.

This aspect also leads to a final advantage regarding feasibility. If feasible so-

lutions are discontinued towards the end of the search tree, more feasible solutions

are generated by CP-Beam-ACO. This improves the chances that a feasible solution

will be found.
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Figure 4.4: Here we see that CP-Beam-ACO potentially generates many more so-
lutions. (a) shows that several solutions for CP-ACO may not lead to complete
solutions. (b) where solutions may fail, e.g. after the first two components of the
first solution, CP-Beam-ACO makes use of the feasible solutions to construct new
solutions derived from the feasible ones.

We have discussed how CP-Beam-ACO may provide significant improvements

to CP-ACO. However, a more complex hybrid introduces new aspects to consider

when implementing the algorithm for a problem. For example, the estimate for the

beam component must be carefully chosen. A good choice may achieve some or all

of these improvements. These improvements may also be dependent on the problem

characteristics.

A problem that we encounter is the same one that is carried over from the base

algorithms, i.e., the choice of best parameters. Again, we point out here that there is

no obvious way to determine the parameter settings but to examine some subset of

the parameter space. For each study to be undertaken we specify how we determined

the choices.
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4.5 Conclusion

In this chapter we have motivated the need for an efficient version of the CP-ACO

algorithm proposed by Meyer & Ernst (2004). Initially, hybridizations involving

metaheuristics were discussed, where we see a clear advantage obtained by inte-

grating with CP. Specifically, methods to deal with non-trivial hard constraints are

often tedious to design and are problem specific. By devising a hybrid using CP

we are able to deal with these hard constraints efficiently in a problem independent

manner.

Although CP-ACO was shown to be effective, the algorithm requires large run

times due to the propagation costs associated with CP. Within the current frame-

work, the ACO component of the algorithm, often, repeatedly constructs the same

solution which require the same propagation. Thus, by further hybridizing with

Beam search the solution construction is parallelized, leading to CP-Beam-ACO

where solutions within an iteration are never repeated.

CP-Beam-ACO proves advantageous in more than one respect. Firstly, the CP

solver in only invoked for unique solutions. Secondly, a larger number of solutions

are labeled compared to CP-ACO. Thirdly, more solutions are available to update

the pheromones for the learning component and finally, dependent on the estimates

of the beam component we may see a feasibility advantage, where more feasible

solutions will occupy the beam near the end of the search tree. Having pointed

out these advantages, it is worth noting that it is unlikely that all of these will be

observed with every problem tested. In fact, for most problem types only one or

two of these advantages may be seen. However, the advantage/s obtained can lead

to significant improvements as we will demonstrate with case studies in the next

chapter.

Applying CP-Beam-ACO is more complex than ACO or CP-ACO since we have

further aspects of the algorithm to consider. This includes parameter settings which

are hard to determine for the simpler algorithms to begin with. If these setting

are carefully considered we may see significant improvements for CP-Beam-ACO.

We consider three different problems (SMJS, MMJS and CS) in the next three

chapters where CP-Beam-ACO is carefully applied to each of these problems and

its performance is analysed.
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Chapter 5

Case Studies

In order to compare CP-Beam-ACO to CP-ACO and the non-CP algorithms, we

examine its performance on three different problems. These are single machine

job scheduling with sequence dependent setup times (SMJS), resource constrained

multiple machine job scheduling (MMJS) and car sequencing (CS). These problems

consist of different characteristics and problem-specific characteristics cannot be

expected to transfer from problem to problem. Each of these problems are either

NP-hard or NP-complete and determining feasibility for SMJS and CS is know to

be NP-hard. We show here that CP-Beam-ACO based on stochastic sampling is

the most effective algorithm for all these problems considering both optimality and

feasibility.

5.1 Single Machine Job Scheduling

The single machine job scheduling (SMJS) problem with sequence-dependent setup

times has received considerable interest within the AI and OR communities. It is

closely related to other problems such as, the TSP with time windows. In fact, the

problem is identical to the asymmetric TSP with time windows (Ascheuer, Fischetti

and Grőtschel, 2001). Deciding if a feasible solution exists is known to be NP-

complete (Savelsbergh, 1985) and finding an optimal solution is NP-hard (Ascheuer

et al., 2001).

We evaluate the various implementations of ACO, CP-MMAS and CP-Beam-

MMAS for the SMJS problem. The main result here is that CP-Beam-MMAS

significantly reduces the amount of computation time in comparison to CP-MMAS.

This is attributable the parallelization of the solution construction which allows

storing intermediate solver states compactly. This allows partial solutions to effi-

ciently transfer from one part of the search tree to another. This efficient use of

the constraint solver leads to more computation time that can be devoted to the

optimization/learning component.

57
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5.1.1 Problem Definition

The problem is formally defined as follows. A single machine must process n jobs J =

{1, ..., n} with processing times P = {p1, . . . , pn}, release times R = {r1, . . . , rn},
and due times D = {d1, . . . , dn}.1 The machine cannot process more than one job

at the same time. Moreover, the processing of an job must not be interrupted.

Furthermore, for each ordered pair (i, j) of jobs (where i 6= j) a setup time stij

is given. Any permutation π of the n jobs represents a candidate solution to the

problem. Given such a permutation π, where πi denotes the job at position i, the

so-called starting times Ŝ = {ŝ1, . . . , ŝn} and the ending times Ê = {ê1, . . . , ên} are

well-defined. They can be determined recursively in the following way: ŝπ1 = 0 and

ŝπi = max{êπi−1
+stπi−1πi , rπi}, where êπi−1

= ŝπi−1
+pπi−1

. The objective is to find a

permutation π∗ such that f(π∗) = êπ∗n is minimal. Function f() is commonly called

the makespan.

5.1.2 MAX–MIN Ant System

The ACO variant used here isMMAS. We also considered ACS and observed that

MMAS is better suited to the SMJS problem, particularly in terms of feasibility.

In the context of this problem, variables are bound to jobs, a complete solution is

a permutation/sequence of all jobs, and the pheromone trails are used to learn job

successor relations. This is particularly meaningful for the ATSP since the aim is to

minimize the cumulative setup times and learning successor relations are likely to

result in high quality schedules. More specifically, the pheromone model T consists

of a pheromone value τij for each ordered pair (i, j) of jobs, where i 6= j. Addition-

ally, pheromone model T consists of pheromone values τ0i, i = 1, . . . , n, where τ0i

represents the desirability of placing job i at the first position of the permutation

under construction.

In addition to CP-ACS, MMAS (Stűtzle and Hoos, 2000) is also implemented

here in the hypercube framework (Blum and Dorigo, 2004). The reason for choos-

ing MMAS, in contrast to the choice of ACS in (Meyer and Ernst, 2004), is that

MMAS seems better suited than ACS for the hybridization with beam search (Blum,

2005). In the following we give a short technical description of this algorithm. For a

more detailed introduction to the parameters and the functioning of this algorithm

we refer to (Blum and Dorigo, 2004). At each iteration, na = 10 artificial ants

construct (not necessarily feasible) solutions to the problem in form of permutations

1Bars indicate data for this study.
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Algorithm 6MMAS for the SMJS problem
1: input: A SMJS instance
2: πbs := null(global best), πrb := null(restart best)
3: // initialize the convergence factor and update flag
4: cf := 0, bs update := false
5: forall τij ∈ T do τij := 0.5 end forall
6: while termination conditions not satisfied do
7: Siter := ∅
8: for j = 1 to na do
9: πj := ConstructPermutation()

10: if πj is a feasible solution then Siter := Siter ∪ {πj} endif
11: end for
12: // Set the iteration best to the best solution
13: πib := argmin{f(π)|π ∈ Siter}
14: if πib is a feasible solution then
15: Update(πib,πrb,πbs)
16: // update pheromone trails with the current best solutions
17: ApplyPheromoneValueUpdate(cf ,bs update,T ,πib,πrb,πbs)
18: cf := ComputeConvergenceFactor(T )
19: if cf ≥ 0.99 then
20: if bs update = true then
21: // reset the pheromones, restart best and update flag
22: forall τij ∈ T do τij := 0.5 end forall
23: πrb := null, bs update := false
24: else
25: bs update := true
26: end if
27: end if
28: end if
29: end while
30: output: πbs

of all jobs. The details of the algorithmic framework shown in Algorithm 6 are ex-

plained in the following.

ConstructPermutation(): A permutation π of all jobs is incrementally constructed

from the first variable to the last. The solution construction stops when either the

permutation is complete, or when it becomes clear that the resulting solution will

be infeasible.2 Given a partial permutation π with i − 1 positions already filled, a

job k ∈ J \ {π1, . . . , πi−1} for the i-th position in π is chosen as follows:

p(πi = k) =
τπi−1k × ηk∑

j∈J\{π1,...,πi−1}
(
τπi−1j × ηj

) , (5.1)

2If the CP solver renders the current partial solution as infeasible.



60 CHAPTER 5. CASE STUDIES

The obvious heuristics to use here would be the inverse of the due time (favours

feasibility) or the inverse of the setup time (minimizes setup times). Therefore we

make use of a two phase procedure where ηk is defined as the inverse of the due time

of job k, i.e., 1/dk, until a feasible solution is found. Once this happens ηk, respec-

tively ηj, is exchanged by ηπi−1k, respectively ηπi−1j, and is defined as the inverse of

the setup time between jobs πi−1 and k, respectively j. The first construction step,

that is, when π is still empty, is a special one. In this case, the probability p(π1 = k)

is proportional to the pheromone value τ0k. When a feasible solution is found there

is no heuristic bias applied in the first selection step.

Update(πib,πrb,πbs): This procedure (as well as the pheromone update, see below)

is only executed in case πib is a valid solution. It sets πrb and πbs to πib (i.e., the

iteration-best solution), if f(πib) < f(πrb) and f(πib) < f(πbs).

ApplyPheromoneUpdate(cf ,bs update,T ,πib,πrb,πbs): Our algorithm potentially uses

three different solutions for updating the pheromone values:3 (i) the iteration-best

solution πib, (ii) the restart-best solution πrb and, (iii) the best-so-far solution πbs.

Their respective contribution to the update depends on the convergence factor cf ,

which provides an estimate about the state of convergence of the system. To perform

the update, first an update value ξij for each pheromone value τij ∈ T is computed:

ξe := κib · δ(πib, i, j) + κrb · δ(πrb, i, j) + κbs · δ(πbs, i, j), where κib is the weight of πib,

κrb the weight of πrb, and κbs the weight of πbs such that κib + κrb + κbs = 1.0. For

i, j = 1, . . . , n, the δ-function is the characteristic function, that is, δ(π, i, j) = 1 if

job j is scheduled directly after job i in permutation π, and δ(π, i, j) = 0 otherwise.

Similarly, when i = 0 and j = 1, . . . , n, δ(π, 0, j) = 1 in case j is the first job in

permutation π, and δ(π, 0, j) = 0 otherwise. Then, the following update rule is

applied to all pheromone values:

τij = min {max{τmin, τij + ρ · (ξij − τij)}, τmax} ,

where ρ ∈ (0, 1] is the learning rate, set to 0.1. The upper and lower bounds

τmax = 0.999 and τmin = 0.001 keep the pheromone values always in the range

(τmin, τmax), thus preventing the algorithm from converging to a solution. After tun-

ing, the values for κib, κrb and κbs are chosen as shown in Table 5.1.

3See (López-Ibáñez et al., 2009) which uses such an update scheme. In general,MMAS update
schemes make use of both the iteration and global best solutions, either independently in different
phases or together (Dorigo and Stűtzle, 2004).
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Table 5.1: The schedule used for values κib, κrb and κbs depending on cf (the
convergence factor) and the Boolean control variable bs update.

bs update = false bs update = true
cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbs 0 0 0 0 1

Algorithm 7 Procedure ProbabilisticBeamSearch(θ, µ)

1: B0 = {π = ()}
2: t = 0
3: while t < n and |Bt| > 0 do
4: C = ProduceChildren(Bt)
5: for k = 1, . . . ,min{bµ · θc, |C|} do
6: πk = ChooseFrom(C)
7: C = C \ πk
8: Bt+1 = Bt+1 ∪ πk
9: end for

10: Bt+1 = Reduce(Bt+1, θ)
11: t← t+ 1
12: end while
13: output: if t = n then argmin{f(π) | π ∈ Bn−1} else null

ComputeConvergenceFactor(T ): This function computes, at each iteration, the con-

vergence factor (Blum, 2005)

cf = 2×

((∑
τij∈T max(τmax − τij, τij − τmin))

|T | × τmax − τmin

)
− 0.5

)
(5.2)

The convergence factor cf can therefore only assume values between 0 and 1. The

closer cf is to 1, the higher is the probability to produce the same solution over and

over again.

5.1.3 Beam-MMAS

In the following we explain how to obtain a Beam-ACO version from MMAS

of the previous section leading to Beam-MMAS. Beam-MMAS is obtained from

Algorithm 6 by replacing lines 5-10 with πib = ProbabilisticBeamSearch(θ, µ), which

calls the probabilistic beam search procedure as shown in Algorithm 7. At the start

of the procedure the beam only contains an empty permutation, that is B0 = {π =

()}. At each iteration t ≥ 0, the algorithm produces the set of all possible children

C of the partial permutations that form part of the current beam Bt (see line 4,
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ProduceChildren(Bt)). The partial solution is then extended by a choice for the next

variable (πk). Extending π ∈ Bt means placing j at position t + 1 of π. At each

iteration, at most bµ · θc candidate extensions are selected from C by means of the

procedure ChooseFrom(C) to form the new beam Bt+1. At the end of each step, the

new beam Bt+1 is reduced by means of the procedure Reduce in case it contains more

than θ partial solutions. The procedure stops when either Bt is empty, which means

that no feasible extensions of the partial permutations in Bt−1 could be found, or

when t = n−1, which means that all permutations in Bn−1 are complete. In the first

case, the algorithm returns null, while in the second case the algorithm returns the

solution with the best makespan.

Procedure ChooseFrom(C) uses the following probabilities for choosing a candi-

date extension πt+1 = j from C:

p(πt+1 = j) =
τπtj · νπtj∑

k∈J\{π1,...,πt} (τπtk × νπtk)
, (5.3)

The greedy function νπtj assigns a heuristic value to each candidate extension

πt. In principle, we could use the earliest due date heuristic as in Eq. 5.1 for this

purpose. However, when comparing two extensions πt = j ∈ C and π′t = k ∈ C, their

respective earliest due dates might be misleading in the case π 6= π′. As in (López-

Ibáñez et al., 2009), we solved this problem by defining the greedy function ν(·) as

the inverse of the sum of the ranks of the earliest due date values that result from

the complete construction of the partial solution corresponding to 〈π, j〉. For further

details of this procedure see (López-Ibáñez et al., 2009).

Finally, the application of procedure Reduce(Bt) removes the worst max{|Bt| −
θ, 0} partial solutions from Bt. For this purpose one usually uses a lower bound

for evaluating partial solutions. In fact, this lower bound is generally critical to

the performance of the algorithm. However, in the case of the SMJS problem it is

surprisingly difficult to find a lower bound that can be efficiently computed. In pilot

experiments we discarded several obvious choices, including the minimum setup

time estimate and the assignment problem relaxation (Carpaneto, Martello and

Toth, 1988; Cormen et al., 2001). These are analysed in Chapter 6. Due to the

lack of an efficient lower bound, we therefore use stochastic sampling for evaluating

partial solutions. More specifically, for each partial solution a numberN s of complete

solutions is sampled. This is done as follows. Starting from the respective partial

solution, the solution construction mechanism of MMAS is used to complete the

partial solution in potentially N s different ways. The only difference to the solution

construction mechanism ofMMAS is that when encountering an infeasible partial

solution the solution construction is not discarded. Instead, the partial solution is
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Algorithm 8 Construct solutions using CP

1: i ← 0, feasible ← true
2: while i ≤ n & feasible do
3: i← i+ 1
4: repeat
5: D = domain(πi)
6: j = select job(D,τ)
7: if i = 1 then
8: feasible = post(πi ← j ∧ ŝj ← 0)
9: else

10: feasible = post(πi ← j ∧ ŝj ← max(rj, êj + stπi−1,j))
11: end if
12: if not(feasible) then post(πi 6= j)
13: until D 6= ∅ ∨ feasible
14: end while
15: if feasible then return π else return NULL

completed, even though it is infeasible. The value of the best one of the N s samples

is used as a measure of the goodness of the respective partial solution. Two measures

are considered for comparing different samples: the number of constraint violations,

and the makespan. The sample with the lowest number of constraint violations is

considered best, and ties are broken with the makespan.

5.1.4 Integrating CP

Integrating CP into ACO for SMJS is shown in Algorithm 8. Extending the

discussion seen in the previous chapter, the basic idea is to use constraint variables

for the decision variables. We can then use a constraint solver in combination with

a constraint model that captures the pertinent relationships between the decision

variables to automatically keep track of the feasibility of (partial) solutions. We fol-

low the study by (Meyer and Ernst, 2004) where CP-ACS was shown to be effective

for the SMJS problem. The performance of the algorithm depends on finding feasi-

ble solutions and this is best achieved with a strong CP model which will guide the

algorithm towards feasibility. This CP model suggested by Meyer & Ernst (2004) is

discussed next.

The CP model for SMJS

The model maintains two sets of variables. The first set are those variables that

were defined in the problem description in Section 5.1.1, that is, the positions πi of

permutation π, Ŝ and Ê. A second set of variables from the CP side are introduced

which define a stronger model that enhances propagation. Now for the permutation

π, auxiliary variables corresponding to the constants are defined: P = {p1, ..., pn},
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release times R = {r1, ..., rn}, and due times D = {d1, ..., dn}. Note here that an

index i of any of these variables refers to the job at position i in the permutation

under construction, i.e., πi. Additional variables for setup times ST = {st2, ..., stn}
are defined where the index refers to changeover times between consecutive jobs.

For example, st2 refers to the setup time from job π1 to job π2. Hence there are only

n − 1 such variables. Variables for the start times (S = {s1...sn}) and end times

(E = {e1...en}) corresponding to Ŝ and Ê are also defined. Now we can state the

CP model. The jobs are first constrained to be unique:

∀i : πi ∈ {1, . . . , n} ∧ distinct(πi)

Strong propagation is then achieved by combining these models by coupling the data

and introducing constraints. The data are coupled with the following constraints:4

∀i : ei = si + pi ∧ si ≥ ri ∧ ei ≤ di

∀i > 1 : si ≥ ei−1 + sti ∧ sti ∈ {stjk | j, k ∈ {1, . . . , n}}

∀i : di ∈ {dj | j ∈ 1, . . . , n} ∧ ri ∈ {rj | j ∈ 1, . . . , n} ∧ pi ∈ {pj | j ∈ 1, . . . , n}

Once the id of the ith job of the permutation is known the following data and

variables can be bound:

∀i > 1, k, l : πi−1 = k ∧ πi = l⇒ sti = stkl

∀i, k : πi = k ⇒ di = dk ∧ ri = rk ∧ pi = pk ∧ si = min(rk, ei−1 + sti)

∀i, k : ei > dk ⇒ πi 6= k

We make use of the high-level cumulatives(·) constraint, which a scheduling

constraint in GECODE (Gecode, 2010). This constraint is initialized with all the

data and interfaces with the model via Ŝ and Ê. For cross propagation between the

two models, the start, end and job id variables are coupled:

∀i, k : πi = k ⇒ si = ŝk ∧ ei = êk

∀i, k : sk > ŝi ∨ ŝi < sk ⇒ πi 6= k

The integration of CP into Beam-MMAS is very similar. In particular, CP is

integrated into the phase of Beam-MMAS which produces possible extensions to

the current beam front (see Algorithm 9). The purpose is to restrict the construction

of candidate solutions to those that are compatible with the problem constraints.

4Note that the bars on top labels imply constants and di is not the same as di
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Algorithm 9 ProduceChildren

1: input: (Bt, µ, T )
2: for i ∈ Bt do
3: k ← 0, D = domain(πit+1)
4: while k < µ ∧D 6= ∅ do
5: π = πi

6: j = selectJob(D,τ)
7: if t = 0 then
8: feasible = post(πt+1 ← j ∧ ŝj ← 0)
9: else

10: feasible = post(πt+1 ← j ∧ ŝj ← max(rj, êj + stπt,j))
11: end if
12: if (feasible) then Bt+1 = Bt+1 ∪ π
13: k ← k + 1, D = D \ j
14: end while
15: end for

The algorithm implemented here selects all feasible children and ranks them based

on their due times as described earlier.

YFD Solver
Scheduling

Solver

CP Model

Constraints

Candidates

ACO Model

Pheromone trails

Objective

Static
Heuristics

Labeling
Choice

Figure 5.1: Here, we see coupling between the ACO and CP models. The CP solver
builds a candidate list by invoking the finite domain and scheduling solvers. From
the ACO side the pheromone trails and static heuristics are used and combined with
the candidate list from the CP solver a choice is made.

Figure 5.1 shows the coupling between the two models to make a labeling choice.

The CP solver invokes the finite domain and scheduling solvers and builds a can-

didate list. From the ACO side the pheromones and static heuristics are used to

determine a labeling choice. This choice is approved only if it also exists in the

candidate list held by the CP solver.
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5.1.5 Experiments and Results

All experiments were run on the Monash Sun Grid and the Enterprisegrid5 using

the parameter sweep application and grid middleware broker Nimrod/G (Abramson,

Giddy and Kotler, 2000). Each algorithm was applied for 30 times to each problem

instance considered, allowing a running time of 10 hours for each application.

Problem Instances

The problem instances used in this paper include those used in (Meyer and Ernst,

2004) and additional ones from (Ascheuer et al., 2001). Individual files are labeled

xn.i where x = label, n = instances size and i = index. For example, W20.1 is

the first file with 20 jobs. The first nine instances are real data taken from wine

bottling in the Australian wine industry. There are no release times for this data

and the instances are more constrained with decreasing index.

The second set of instances are for the ATSP with time windows and are taken

from the literature (Ascheuer et al., 2001). The index refers to the number of time

windows that have been removed. For example, the RBG problems are identical

except that RBG27.a.15 has time windows for 15 jobs. Hence, a larger index

indicates a more tightly constrained instance.

The third set of instances are selected from the same source as above (Ascheuer

et al., 2001) and aim to demonstrate the algorithms’ consistency across a variety

of instances. Due to time and resource constraints, instances with a maximum of

152 jobs were considered. Additionally, a number of smaller instances (< 27 jobs)

which were not considered in (Meyer and Ernst, 2004) are not reported since the

performance of all three algorithms is very similar, nearly always finding an optimal

solution.

Parameter Settings

In the following we give a summary of the parameters settings that were chosen

based on past experiments (Meyer and Ernst, 2004; Blum, 2005) and after tuning

by hand. In CP-MMAS the number of ants was set to 10 per iteration (based on

(Meyer and Ernst, 2004)), the learning rate was set to ρ = 0.01 (tuned by hand).

In MMAS the upper bound for the pheromone levels was set to τmax = 0.999 and

the lower bound to τmax = 0.001.

In CP-Beam-MMAS we used θ = 10, µ = 2.0 and N s = 20. The choice

of θ = 10 is motivated by the fact that CP-MMAS uses this number of ants at

5The Nimrod project has been funded by the Australian Research Council and a number of Aus-
tralian Government agencies, and was initially developed by the Distributed Systems Technology
CRC.
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each iteration. The setting of µ was adopted from past experiments with a similar

problem (Blum, 2005). N s was chosen based on initial experiments.

Results

The algorithms tested here includeMMAS, Beam-MMAS and CP-Beam-MMAS.

Additionally, CP-ACS was also implemented and is briefly discussed. The major re-

sults of this chapter can be summarised as follows.

• CP-Beam-MMAS is the best performing algorithm regarding solution quality

and is superior to CP-MMAS on 22 out of 43 instances. However, CP-

MMAS never fails on any run, whereas CP-Beam-MMAS fails on a total of

4 out of 90 runs across 3 instances

• MMAS performs poorly with respect to feasibility but is effective if feasibility

is found

• Beam-MMAS is slightly better than MMAS when considering feasibility

and is also effective if feasibility is found

Overall, CP-Beam-MMAS is the best performing algorithm for the SMJS prob-

lem. It inherits the feasibility characteristics of CP-MMAS and easily outperforms

it in terms of optimality.

The results of the two algorithms are shown in Table 5.2, which has the following

format. The first column contains the instance identifier. Then, for each algorithm

we show four different columns. The first one of these four columns presents the

best solution found across 30 runs (best), the second one shows the mean of the best

solutions across all 30 runs (mean), the third one contains the associated standard

deviations (sd), and the fourth one the number of times that the algorithm failed to

find a feasible solution (fail) out of the 30 runs. In the three columns with heading

best a value is marked in boldface in case no other algorithm found a better solution

and at least one algorithm was not able to match this solution value. Similarly,

in the three columns with heading mean a value is marked in boldface and italic

if no other algorithm has a better mean and at least one algorithm has a worse mean.

In the following we delve into a comparison of both algorithms separated for the

three instance sets. For the small instances (< 25 jobs) both algorithms perform

equally well except for instance W20.1 where CP-MMAS performs poorly. In

general, for the first set of instances, CP-Beam-MMAS is the best performing

algorithm on the medium-large instances. Even when outperformed, this algorithm

always finds solutions close to the best. On the second set of instances the algorithms
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perform equally well except for RBG27.a.3 where CP-MMAS performs best and

RBG27.a.15 where CP-Beam-MMAS is the best by a large margin. On the third set

of instances CP-Beam-MMAS consistently outperforms the other two algorithms.

Again, when the best or best average results are not obtained, CP-Beam-MMAS

always finds solutions whose costs are very close to the best. Furthermore, the

algorithm is very robust, for many instances always finding the same best solution

value across all 30 runs.

In Appendix D we also compare the original CP-ACS algorithm of Meyer &

Ernst. First, comparing CP-ACS with the original version presented in (Meyer and

Ernst, 2004) shows that our re-implementation performs competitively. Meyer &

Ernst use labeling steps as the termination criteria, which results in the fact that

the algorithm was run significantly longer than 10 hours for large problems. Despite

the restricted time limit our re-implementation is competitive and is significantly

worse than the original version only on problem instances W30.1 and RBG027.a.15.

However, it is superior to the original version on several other problems (e.g., W30.2).

This can be verified by comparing to the results provided in (Meyer and Ernst, 2004).

Concerning the comparison between CP-ACS and CP-MMAS, the failure rate

of CP-ACS is very high for instances with 48 or more jobs and this algorithm there-

fore does not scale well. In contrast, CP-MMAS does not have such failure issues.

In fact, CP-MMAS is the only algorithm that never fails in finding a feasible solu-

tion. CP-ACS outperforms the CP-MMAS (sometimes by a large margin) in terms

of solution quality when feasible solutions are found. This may be explained by a

certain amount of determinism in the solution construction of ACS.

Considering feasibility, as mentioned before, CP-ACS struggles on some of the

largest instances, always failing on some (e.g. RBG050b) and nearly always failing on

others (all instances of size greater than 67). While CP-MMAS has no problems

in this respect, CP-Beam-MMAS fails in 4 out of 90 runs on three instances,

demonstrating also a very low failure rate. Also see Figure 5.2 which shows the

cumulative failures across the instances where all the algorithms have been tested.

Clearly, the CP-based algorithms are superior with CP-ACS struggling on some

instances.

The results forMMAS and Beam-MMAS with stochastic sampling on a subset

of the instances are presented in Table 5.3. We only consider a subset of the instances

here, including those from (Meyer and Ernst, 2004) and three additional instances,

RBG050c, RBG055a and RBG067a. These results show that Beam-MMAS out-

performs MMAS in terms of feasibility. Where feasibility is found MMAS often

finds higher quality solutions. A comparison with the CP-based algorithms shows

that the non-cp algorithms struggle with feasibility. Also see Figure 5.2. However,
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Table 5.2: Results of CP-MMAS and CP-Beam-MMAS for all considered in-
stances. Statistically significant results (p = 0.05) are marked in boldface.

CP-MMAS CP-Beam-MMAS

Instance best mean sd fail best mean sd fail

W8.1 8321 8321.00 0 0 8321 8321.00 0 0
W8.2 5818 5818.00 0 0 5818 5818.00 0 0
W8.3 4245 4245.00 0 0 4245 4245.00 0 0
W20.1 8914 9056.80 86.04 0 8504 8504.00 0 0
W20.2 5062 5062.00 0 0 5062 5068.00 11.33 0
W20.3 4312 4312.00 0 0 4312 4323.70 15.5 0
W30.1 8887 9068.50 127.67 0 8172 8334.50 65.52 0
W30.2 4682 4839.70 156.81 0 4527 4666.30 51.86 0
W30.3 4288 4364.20 48.36 0 4128 4217.80 35.46 0

RBG10.a 3840 3840.00 0 0 3840 3840.00 0 0
RBG16.a 2596 2596.00 0 0 2596 2596.00 0 0
RBG16.b 2094 2094.00 0 0 2094 2094.00 0 0
RBG21.9 4481 4481.00 0 0 4481 4481.00 0 0
RBG27.a.3 927 927.10 0.25 0 940 958.50 13.74 0
RBG27.a.15 1500 1543.60 18.54 0 1068 1095.90 19.28 0
RBG27.a.27 1076 1076.00 0 0 1076 1076.00 0 0
BRI17.a.3 1003 1003.00 0 0 1003 1003.00 0 0
BRI17.a.10 1031 1031.00 0 0 1031 1031.00 0 0
BRI17.a.17 1057 1057.00 0 0 1057 1057.00 0 0

RBG027a 5132 5177.70 18.51 0 5093 5093.00 0 0
RBG031a 3498 3498.00 0 0 3498 3498.00 0 0
RBG033a 3757 3757.00 0 0 3757 3757.00 0 0
RBG034a 3314 3362.00 31.1 0 3314 3314.00 0 0
RBG035a 3388 3446.10 44.41 0 3388 3388.00 0 0
RBG035a.2 3325 3325.00 0 0 3325 3325.00 0 0
RBG038a 5699 5914.90 83.45 0 5699 5699.00 0 0
RBG040a 5679 5680.70 5.74 0 5679 5679.00 0 0
RBG041a 3793 3906.30 89.41 0 3793 3793.00 0 0
RBG042a 3363 3491.20 71.08 0 3296 3339.00 20.6 0
RBG048a 9856 10019.30 89.26 0 9799 9876.60 44.8 1
RBG049a 13257 13401.10 72.09 0 13257 13264.10 12.9 0
RBG050a 12050 12050.90 5.11 0 12050 12050.00 0 0
RBG050b 12039 12155.40 69.65 0 12044 12126.60 33.6 0
RBG050c 11027 11115.10 65.7 0 10985 11015.30 22.6 1
RBG055a 6929 7045.50 64.32 0 6929 6929.00 0 0
RBG067a 10368 10485.00 65.51 0 10331 10331.00 0 0
RBG086a 16899 17028.80 85.06 0 16899 16899.00 0 0
RBG092a 12501 12530.10 35.77 0 12501 12501.00 0 0
RBG125a 14265 14383.20 98.45 0 14214 14232.20 25.2 0
RBG132 18524 18594.60 74.54 0 18524 18524.00 0 0
RBG132.2 18535 18764.50 96.63 0 18524 18528.20 14.1 0
RBG152 17455 17455.00 0 0 17455 17455.00 0 0
RBG152.2 17455 17505.80 64.3 0 17455 17455.00 0 2
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Figure 5.2: The cumulative failure results for MMAS, Beam-MMAS, CP-ACS,
CP-MMAS and CP-Beam-MMAS are presented here; For each algorithm, each
block corresponds to one problem instance where the shading/colour indicates the
problem instance and the height of each block indicates the number of failures; The
instances considered here are all of those from Meyer & Ernst (2004) and three
additional instances, RBG050c, RBG055a and RBG067a.

when feasibility is found MMAS is still very effective indicating that the learning

component of ACO is valuable.

CP Propagation Costs

CP propagation costs are traded-off for stochastic sampling costs in CP-Beam-

MMAS. We therefore analyse the total cost for CP propagation versus the costs

for stochastic sampling. We consider a number of instances of varying sizes from

8 to 67 jobs. For 100 iterations of the algorithm’s execution we measure the time
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Table 5.3: Results of MMAS and Beam-MMAS on a subset of the instances.
Statistically significant results (p = 0.05) are marked in boldface.

MMAS Beam-MMAS

Instance best mean sd fail best mean sd fail

W8.1 8321 8321.00 0.00 0 8321 8321.00 0.00 0
W8.2 5818 5818.00 0.00 0 5818 5818.00 0.00 0
W8.3 4245 4245.00 0.00 0 4245 4245.00 0.00 0
W20.1 8504 8518.83 1555.45 1 8504 8504.00 0.00 0
W20.2 5062 5062.00 0.00 0 5062 5078.00 14.04 0
W20.3 4312 4312.00 0.00 0 4312 4323.17 15.46 0
W30.1 8087 8087.00 1476.48 29 8012 8065.00 48.81 0
W30.2 4542 4588 20.94 0 4577 4654.50 57.76 0
W30.3 4183 4207.67 18.19 0 4163 4218.17 31.36 0

RBG10.a 3840 3840.00 0.00 0 3840 3840.00 0.00 0
RBG16.a 2596 2596.00 792.11 3 2596 2596.00 0.00 0
RBG16.b 2094 2094.00 0.00 0 2094 2094.00 0.00 0
RBG21.9 4481 4481.00 0.00 0 4481 4481.00 0.00 0
RBG27.a.3 927 927.23 0.94 0 944 968.17 14.99 0
RBG27.a.15 1068 1104.87 562.25 15 1131 1191.93 34.00 0
RBG27.a.27 30 1076 1076 272.99 2
BRI17.a.3 1003 1003.00 0.00 0 1003 1003.00 0.00 0
BRI17.a.10 1031 1031.00 0.00 0 1031 1031.00 0.00 0
BRI17.a.17 1057 1057.00 365.45 4 1057 1057.00 0.00 0

RBG050.c 30 30
RBG055.a 30 30
RBG067.a 30 30
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required to for a CP call (i.e., calling the solver and obtaining its state) and the time

required for stochastic sampling independently. The average results across the 100

runs are reported in Figure 5.3. As expected, given the complex CP model, the CP

costs increase exponentially with problem size whereas stochastic sampling shows

only a quadratic increase.
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Figure 5.3: This figure shows the time needed (seconds) for CP (CP solver calls)
versus SS (stochastic sampling). An Θ(n2) trend-line is also shown. A randomly
selected instance from each machine size was run for 10 iterations and the average
results across the 10 runs are reported here. Stochastic sampling clearly requires
a greater amount of time compared to the CP calls and this difference generally
increases with machine size. Note that the results here do not require that feasible
solutions are found.

5.1.6 Discussion

The results demonstrate overall that the best algorithm for the SMJS problem is

CP-Beam-MMAS. Out of 43 instances examined here Beam-ACO finds the best

average solutions for 22 instances and is equal or approximately equal on 15 others.

CP-MMAS is more effective on three other instances.
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For smaller instances (less than 20 jobs) all the algorithms perform equally well as

expected. Considering instances of size greater than 20, CP-Beam-MMAS performs

better than or equally well to the other algorithms except for two instances. The

reason for this improvement can be attributed to the beam search component of

CP-Beam-MMAS. First, the time spent in constraint propagation is reduced due

to the parallel aspect of the solution construction in beam search. This leads to

the fact that CP-Beam-MMAS can spend more time in optimization in contrast

to spending time in finding feasibility. Second, this parallel aspect of the solution

construction in beam search also allows to discard partial solutions in favour of

other partial solutions in different areas of the search tree that appear to be more

promising.

Stochastic sampling was used as the preferred method of obtaining estimates.

Further analysis of stochastic sampling is conducted in Chapter 6 and we briefly

state the results here. We examined two different lower bounds in place of stochastic

sampling which do not prove effective with respect to feasibility or solution quality.

Furthermore, we see that the samples generated with uniform sampling are very

effective but still slightly worse than using pheromones. This is an unexpected

result but shows that samples which are generated without learning can still be

useful.

In summary, CP-Beam-MMAS is able to make an efficient trade-off between

the use of CP for feasibility and the stochastic-heuristic component for finding high

quality solutions. Since the CP overhead is large, the CP-ACO variants spend

more time propagating constraints compared to CP-Beam-MMAS and are thus

less efficient.

5.1.7 Conclusion

We have shown in this study that a hybrid algorithm resulting from the combination

of Beam-ACO with constraint programming is an effective algorithm for the SMJS

problem providing excellent results optimizing makespan. This method uses CP

effectively parallelizing the ACO solution construction and exploiting dependencies

between partial solutions to find high quality solutions. In particular, we see that

CP-Beam-MMAS outperforms CP-MMAS maintaining its feasibility advantage

given the same time-frame. These algorithms easily outperform the non-CP algo-

rithms sinceMMAS or Beam-MMAS struggle with feasibility for relatively large

problems.

Stochastic sampling was used to obtain estimates for the beam component and

we see that this relatively simple procedure is effective. In order to gain better

understanding of stochastic sampling we analyse this method for the SMJS problem
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in Chapter 6. Furthermore, we also analyse bounds known for the SMJS problem

in this chapter to determine whether or not they provide effective estimates.
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5.2 Resource Constrained Job Scheduling

Resource constrained job scheduling has been widely researched in the last 30-40

years with one of the first instances being Johnson’s PhD thesis (Johnson, 1967).

The focus of this research has mainly been to minimize makespan as the objective

(e.g. the same objective as the SMJS problem). However, recently minimizing tar-

diness has also been given some attention (Ballestin and Trautmann, 2008). To get

an idea of the variants of similar problems please refer to (Brucker, Drexl, Mohring,

Neumann and Pesch, 1999; Demeulemeester and Herroelen, 2002; Schwindt, Neu-

mann and Zimmermann, 2003).

The variant of the problem considered here is resource constrained multiple ma-

chine job scheduling which requires scheduling a number of jobs on multiple ma-

chines. The machines may only process one job at a time but, additionally, each job

requires resources that may be commonly used by all the jobs during the current

time point. Therefore, at any single time point the cumulative resource requirements

of the executing jobs must not exceed the available resource. This sort of resource

has been referred to as a renewable resource (Brucker et al., 1999) and this partic-

ular problem was initially motivated from the following scenario. Consider several

mining sites which are not connected to the main electricity grid. All these sites

may require power from a single power plant which provides electricity (the shared

resource) to the operations at the mines (machines). The power plant may only be

able to provide a limited amount of electricity (e.g., the government may impose a

cap for environmental reasons) and the operations must therefore be scheduled in

such a way that they do not exceed the available power. This may result in some

jobs being delayed beyond their due time and hence the problem may be formulated

as one where we aim to minimize tardiness. However, some operations might have

to complete by a certain time and we incorporate these restrictions as additional

hard problem constraints.

In this chapter we examine methods based on ACO, CP and beam search to

determine if they are effective when minimizing tardiness. In order to do this we

determine an ACO model based on past studies and suggest a CP model via the use

of the high-level cumulatives scheduling constraint. In order to examine the beam

search variants we test various bounds (known from literature) including stochastic

sampling which is implemented in a similar manner to how it was implemented for

the SMJS problem. We also re-implement the simulated annealing algorithm from

(Singh and Ernst, 2011) to be able to make a straight-forward comparison with the

resulting algorithm.
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5.2.1 Problem Definition

The multiple machine job scheduling (MMJS) problem can be formally defined as

follows. A number of machines M = {m1, . . . ,ml} must process a number of jobs

J = {j1, . . . , jn}. Each job i is associated with the following data:

• ri: release time of the job

• pi: processing time of the job, i.e., the number of time units the job will spend

on its machine

• di: due time of the job which is the desired time but not enforced as a hard

constraint

• wi: weight of the job (tardiness penalty for completing after di)

• gi: resource used by the job when executing on a machine

• mi: machine that the job must be scheduled on

Each job may only be scheduled after its release time and it must only be executed

on its machine. Each machine is capable of executing only one job at a time. There

is no setup time between jobs and once scheduled, no job may be stopped before it

completes (i.e., no preemption). In addition to the resource constraints, precedence

constraints between jobs may exist. The set of precedences is denoted by PR. For

two jobs i, j ∈ J if i precedes j (i → j), then j may only start after i completes.

Except for wi all data are integral.

A sequence of all jobs is specified by a permutation of the jobs π. Let σ(·) be a

mapping from sequences to schedules. A feasible schedule of π, σ(π), assigns start

times (S = {s1, . . . , sn}) and end times (C = {c1, . . . , cn}) to all the jobs such that

si ≥ ri and sj ≥ si + pi = ci if i → j. Let Pt be the set of jobs either starting at

time t or being processed at time t:

Pt = {j|sj ≤ t < sj + pj, j ∈ J } (5.4)

σ(π) is considered resource feasible if

∀t
∑
k∈Pt

gk ≤ G (5.5)

where gk is the amount of resource required by the job scheduled at time point t

and G is the maximum amount of resource available across all the machines. This

equation specifies that resources requirements of all jobs executing at the same time
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must not exceed the available resource. The objective is to minimize the total

weighted-tardiness of a resource feasible schedule σ(π)

T (σ(π)) =
n∑
i=0

wπi × T (σ(πi)) (5.6)

where T (σ(πi)) is the tardiness of the job πi, max(cπi − dπi , 0).

In addition to the above specification we include hard constraint in the form of

hard due times. The motivation for these additional constraints is that several or

all of the jobs may be required to complete within a specific time. The original due

times still remain as soft constraints and can be interpreted as the time by which we

would like to complete the job (allowing a penalty for surpassing this time) whereas

the new constraints specify that jobs have to be finished by this time. More formally,

we define d̄i, i ∈ {1, . . . ,J } and require that si + pi ≤ d̄i. These hard due times are

an addition to the problem tackled by (Singh and Ernst, 2011).

5.2.2 Ant Colony System

In the context of the problem at hand, we specify a model suggested by (den Besten,

Stűtzle and Dorigo, 2000). This study examines an ACO algorithm for the single ma-

chine problem with the total weight tardiness objective. Hence, the ACO model in

this study is a plausible model to use here.6 The pheromones T consist of pheromone

values τij for each job j and variable i. Algorithm 10 shows the ACS implementation

for MMJS.

We chose to implement ant colony system (ACS). However, we also tested

MMAS to determine its effectiveness on this problem but ACS was more effec-

tive on this problem based on initial results. Algorithm 10 is similar to the previous

versions of ACS that we have seen so far. Here, we briefly describe the procedures

used by this algorithm and highlight some of the diferences to the usual ACS. The

parameter settings will be discussed in Section 5.2.7.

ConstructPermutation(): The permutation π of the jobs is constructed by selecting

a job for each variable. A solution is considered complete when all the variables

have unique jobs assigned to them. The selection of a job proceeds as follows. We

generate a random number q ∈ (0, 1] and compare this with a pre-defined parameter

q0. For the ith variable, πi, if q > q0, a job k for variable i in π is greedily selected

according to

k = max
j∈J\{π1,...,πi−1}

τij × ηj (5.7)

6Note that we also briefly tested other learning models which shown not to be as effective.



78 CHAPTER 5. CASE STUDIES

Algorithm 10 ACS for the MMJS problem
1: input: A MMJS instance
2: πbs := null (global best)
3: initialize T
4: while termination conditions not satisfied do
5: Siter := ∅
6: for j = 1 to na do
7: πj := ConstructPermutation()
8: CompletePlacement(πj)
9: Siter := Siter ∪ {πj}

10: end for
11: // Set the iteration best to the best solution
12: πib := argmin{f(π)|π ∈ Siter}
13: πib := LocalSearch()
14: Update(πib,πbs)
15: // Update the pheromone trails with the current best solution
16: PheromoneUpdate(T ,πbs)
17: // Determine if the pheromones have converged
18: cf := ComputeConvergence(πib)
19: // reset the pheromones if they have converged
20: if cf = true then initialize T end if
21: end while
22: output: πbs

otherwise, select k (k ∈ J \{π1, . . . , πi−1}) from the following distribution

p(πi = k) =
τik × ηk∑

j∈J\{π1,...,πi−1} (τij × ηj)
(5.8)

ηk is defined as wk/dk. This biases the selection of jobs with large weights and

earlier due times. While there are other plausible heuristics such as wk/pk, initial

tests showed that the above heuristic was the most effective for this problem. Note

that the selection of a job does not take precedences into account and these details

will be discussed later.

Every selection of a job j to a variable i has an associated update to the

pheromones:

τij = τij × ρ+ τmin (5.9)

where ρ is a learning rate that is chosen so that the pheromones reduce gradually.

This form of update essentially allows the algorithm to diversify to avoid geting stuck

in a local optimal. τmin = 0.001 is a small value that ensures that no pheromone

value is too small such that it will not be considered in future solution constructions.
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CompletePlacement(): Once a sequence for the current solution has been specified

the schedule σ(π) is determined. This is done using a placement scheme (see Sec-

tion 5.2.3) which satisfies precedence and resource constraints to generate a resource

feasible schedule.

LocalSearch(): Incorporating local search within the algorithm was motivated by the

fact that the SA algorithm described previously is very effective on this problem.

This algorithm essentially interleaves two neighbourhood moves in various ways.

Over here, we consider these moves but apply them sequentially a constant number

of times. The local search is applied to the best solution found in an iteration. The

two neighbourhood moves are as follows:

• Random swapping: this is the most basic move and works as follows. Two

values i, j ∈ 1, . . . , |J | are selected uniformly randomly the corresponding

jobs πi and πj are swapped creating a new solution - π̂. The old solution

is replaced with the new one if the the new solution has improved tardiness,

f(σ(π̂)) < f(σ(π)) ⇒ π = π̂. This move is applied a constant number of

times.

• β-sampling: given the best solution from the above procedure, β-sampling

(Valls, Quintanilla and Ballestin, 2003) is applied to it a constant number of

times. The basic idea is to select a sub-sequence of the permutation starting

at index i (selected uniformly from all the indexes) and move these jobs to the

end of the permutation. All subsequent jobs are moved up to i. Figure 5.4

demonstrates β-sampling on a permutation of 10 jobs with sample size 4.

3
7

8
5

41 29 6 10

3
7

8
5

41 29 6 10

Figure 5.4: This is demonstration of β-sampling for a permutation of 10 jobs. Using
a sample size of 4 and the starting index i = 2, jobs 7,4,8 and 5 move to the end of
the permutation. They maintain their relative sequence as they are shifted. Jobs of
the same colour are required to be placed on the same machine.

Update(πib,πbs): This procedure sets πbs to πib if f(σ(πib)) < f(σ(πbs)) where

f(σ(πib)) is the cost of the iteration best solution (i.e., the weighted tardiness).

For the algorithms that do not use CP we first minimize over the number of con-

straint violations (ν(σ(πib)) < ν(σ(πbs))) determined from a sequence followed by

weighted tardiness.
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ApplyPheromoneUpdate(T ,πbs): The algorithm updates the pheromones based on

the global best solution. All components (i, j) appearing in the global best solution

are used to update the corresponding components in the pheromone matrix:

τij = τij × ρ+ δπbs (5.10)

where δπbs = Q/f(πbs) and Q is determined such that 0.01 ≤ δπbs ≤ 0.1. This

is the reward factor and ensures that for all instances the reward factor is of the

same order. ρ is the learning rate as specified earlier and is defined to be 0.1 for

this study. The pheromones in the CP based algorithms are not rewarded while

a feasible solution is not found but is a global best solution is found it is always

rewarded even if the current iteration finds no feasible solution.

ComputeConvergence(πib): Here, we compute a convergence measure to determine

if the construction mechanism is repeatedly producing the same solution. For this

purpose, a list of the past m solutions, lπib is maintained. The current iteration best

πib is compared to these solutions and if they all have the same cost the pheromones

are re-initialized: f(πib) = f(k), k ∈ lπib ⇒ τij = 0.5 ∀i, j.

5.2.3 Placement Schemes

(Singh and Ernst, 2011) describe the serial and parallel palcement schemes for a

sequence of jobs. They showed that the serial scheme is usually superior and we

therefore focus on this scheme here. The serial method places jobs on their machines

starting at time point t0. Each job is tested for placement at a free point on the

time-line. If it satisfies the resource and precedence constraints and a sufficiently

large sequence of time points are free, the job is immediately placed. See Figure 5.5.

Here, an example is presented for the three machine fifteen job problem. Figure 5.5

(a) shows the current state of the placement where a number of jobs are still left in

the permutation (π) to schedule. The waiting list (π̂) has one job at this point. This

list consist of those jobs which arrived early in the sequence, but due to precedence

constraints must be scheduled after jobs that are still in the sequence. All such

jobs are placed in the list. After any job from the sequence is scheduled the list is

examined to determine if any job may be placed. These waiting jobs are placed as

soon as possible. This is observed in Figure 5.5 (b) where job 3 is placed on machine

one (m1) and job 4 from the waiting list is placed at the earliest possible time after

job 3. In this example, job 4 is placed much later than job 3 and after job 14 since

job 14 is uses most of the available resource which job 4 is unable to share.

The parallel placement scheme works as follows. Starting at t0 the sequence of

jobs is examined to determine if any job can be placed. Once a job is placed the
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Figure 5.5: This is an example of a three machine 15 job problem. (a) Jobs 1 − 5
must be placed on machine 1 (m1, green), 6−10 on machine 2 (m2, yellow) and 6−10
on machine 3 (m3, orange). π is the sequence of jobs remaining to be scheduled and
π̂ is the waiting list. The height of the machines reflect the total resource available
at each time point and the sum of the heights of the jobs scheduled across a time
point must be less than or equal to the height of any one of the machines. The
region in white shows the available resource in any machine. t0 is the point at which
the scheduling starts and tn is the last point on the time-line. In this example job 3
must be placed before job 4. (b) Once job 3 is placed, job 4 is placed immediately
in the first available location. Note that job 4 has to wait for job 14 to complete
since the resource requirement for both these jobs to execute in parallel is greater
than the total available resource.

sequence is examined again until no possible job can be placed on any machine (due

to the resource constraint) at this time point. The procedure then moves along to

the next time point and attempts to place jobs in the same fashion. This procedure

continues until the job list is empty.

A consequence of this placement scheme is that the jobs need not be sequenced

in order of precedence by the ants. While the precedences could be maintained

when constructing sequences, it was found in initial tests that the solution quality

found with this procedure was worse than when the precedences were allowed to
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be violated and handled at the placement phase. This is despite both procedures

permitting the optimal sequence, although, the first procedure allows a much larger

number of sequences that map to the optimal solution.

5.2.4 Simulated Annealing

For the sake of completeness, we provide the SA algorithm suggested by (Singh and

Ernst, 2011) (see Algorithm 11). The algorithm is briefly described here and we

refer the author to the original paper for the complete details.

We obtain an initial temperature t, the procedure for which is described in (Singh

and Ernst, 2011). The algorithm now repeats until the time limit is reached (line 3).

Between lines 8-20 the algorithm randomly swaps jobs and accepts the new solution

if it is an improvement on the original solution. However, if the new solution quality

is worse, it is still accepted with some probability (line 15). Outside this loop the

β−Sampling procedure is applied at line 22. These steps are repeated five times

(lines 5-24) after which the best solution is mutated (line 25).

Note that the solution quality is determined by two factors. The first is the

number of violations of the hard constraints of a sequence and the second is the

weighted tardiness. A new solution is considered an improvement if it has a smaller

violation count or an equal violation count with smaller weighted tardiness.

Mutate(πbs): This procedure, with equal probability, perturbs πbs in the following

way:

• apply β−Sampling() several times and return best solution found

• uniformly randomly swap any two jobs nswaps times7 and return the best so-

lution found

• return a new random list

5.2.5 The CP model

The CP model devised here uses two high level constraints in addition to a num-

ber of low level constraints. Firstly, both high level constraints are an extension

of cumulatives(·). Specifically, we have for each machine m ∈ {1, . . . ,M}, cumula-

tives(sm, pm, cm) which specifies that all jobs i, j ∈ {1, . . . ,J } in machine m must

have smj ≥ smi + pmi = cmi or smi ≥ smj + pmj = cmj . This constraint does not specify

any relationship with the resource constraint and therefore cumulatives(s, p, c, g)

is also used. The execution times are allowed to overlap if the cumulative resource

7nswaps is randomly chosen from {1, . . . , n}
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Algorithm 11 Simulated Annealing the MMJS problem
1: input: A MMJS instance
2: initialize t0
3: while termination conditions not satisfied do
4: k = 0, t = t0
5: while k < 5 do
6: tardiness =∞
7: πrb = πib

8: while i < 5000 do
9: swap πrbl and πrbm (l,m ∈ {1, . . . , |J |})

10: if f(σ(πrb)) < tardiness then
11: tardiness = f(σ(πrb))
12: πib = πrb, i = 0
13: else
14: ∆ = f(σ(πrb))− tardiness
15: if e−∆/t < random() then
16: swap πrbl and πrbm
17: end if
18: i = i+ 1, t = t× 0.95
19: end if
20: end while
21: if f(σ(πib)) < f(σ(πbs)) then πbs = πib end if
22: πib = πbs → β−Sampling();
23: k = k + 1
24: end while
25: πib = Mutate(πbs)
26: end while
27: output: πbs

used during a particular time is bounded by the total resource available. Combining

the above constraints enforces all the start times on a single machine do not overlap

and also that the cumulative resources used at a particular time point are always

less than the available resource.

Additionally, we specify the following constraints:

∀m ∈ {1, . . . ,M}∧ ∀i ∈ {1, . . . ,Jm} : si ≥ ri ∧ si + pi = ci ∧ ci ≤ d̂i

∀m ∈ {1, . . . ,M}∧ ∀i, j ∈ {1, . . . ,Pm} : i→ j ⇒ sj ≥ si + pi

The first set of constraints specify the relationships between the start and end times

of the jobs on a machine m. In particular, the job must start after or at its release

time, its completion time is the sum of its start time and processing time and its

completion time has to be less than the hard due date. The second set of constraints

specify the precedence between jobs on a machine.
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Algorithm 12 Construct solutions using CP

1: i ← 0, feasible ← true
2: while i ≤ n & feasible do
3: i← i+ 1
4: D = domain(πi)
5: repeat
6: j = selectJob(D,τ)
7: if PRj in σ(π) then
8: feasible = updateJobs(πi, j, π̂)
9: else

10: feasible = true, append j to π̂
11: end if
12: if not(feasible) then post(πi 6= j)
13: D = D \ j
14: until D 6= ∅ ∨ feasible
15: end while
16: Return π

5.2.6 Integrating Constraint Programming

The integration here is along similar lines to that of the previous CP integrations

seen so far (see Algorithm 12). The high-level algorithm is essentially the same as

Algorithm 4 from Chapter 2. However, a difference appears here during the solution

construction phase compared to the algorithm for the SMJS problem.

We first recall how this was done in the SMJS problem (Meyer and Ernst, 2004).

For each variable in the sequence, we select a job by sampling the pheromones. This

selection is posted to the CP solver and we continue to select jobs if the solver state

is not in failure. If a selection is inconsistent with the solver this job is discarded

from the current candidate list and a new selection is made. If we are able to bind

all the variables to values we produce a feasible solution.

The difference here is that we keep a waiting list of jobs (π̂ in Algorithm 12).

These are jobs that may only be scheduled if their preceding jobs have been sched-

uled. Therefore, a selection of a job does not automatically invoke the solver. This

is only the case if the job is scheduled when selected. On line 7, PRj is the set of

preceding jobs of j and j may only be scheduled if its preceding list of jobs have

been scheduled. If j can be scheduled, this may allow a number of other jobs to be

scheduled (updateJobs(·)). That is, there may be jobs on the waiting list which are

free to be scheduled once j has been placed. The placements for all jobs that are

scheduled are posted to the solver, immediately, to determine feasibility.

The result of this scheme is that a number of jobs may be sequenced without

being scheduled. Since the solver is only invoked when they are placed, it may

happen that the new job being placed may already be infeasible as a result of

the waiting jobs. Hence, this solver potentially leaves it too late to allow jobs to be
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Algorithm 13 Probabilistic Beam Search with CP

1: input: (θ, µ, T )
2: // Initialize the beam with θ empty solutions
3: B0 = {π1 = (), . . . , πθ = ()}
4: t = 0
5: while t < n and |Bt| > 0 do
6: for i ∈ Bt do
7: k ← 0, D = domain(πit+1)
8: while k < µ ∧D 6= ∅ do
9: (π, π̂)← πi, feasible = true

10: j = selectJob(D, T )
11: // If the predecessors of j have been scheduled
12: if PRj in σ(π) then
13: feasible = updateJobs(π̄, π̂, j)
14: else
15: π̂ ← append(π̂, j)
16: end if
17: if feasible then Bt+1 = Bt+1 ∪ (π, π̂)
18: k ← k + 1, D = D \ j
19: end while
20: end for
21: Bt+1 = Reduce(Bt+1, θ)
22: t← t+ 1
23: end while
24: output: argmax{f(π) | π ∈ Bn−1}

sequenced. However, given that improved sequences are obtained by not maintaining

precedences while sequencing jobs, there is no possible way to post to the solver

immediately. In terms of obtaining feasibility, the current scheme still provides an

effective way to tackle the problem by immediately invoking the solver for most of

the jobs.

CP-Beam-ACS

CP-Beam-ACS is implemented in a similar fashion to the implementation for

SMJS. For the next variable in the partial solution, a number of children are selected

based on the pheromone information biased by a heuristic factor. The total set of

solutions now includes θ×µ candidates. From these the best θ solutions are selected

in a greedy fashion using φ. Note that φ is also computed for a job that is sent to

the waiting list. This set is further reduced to θ using the estimate φ.

See Algorithm 13. This algorithm is different in several aspects compared to the

previous probabilistic Beam search algorithms we have seen so far. Now we have a

solution represented by two sequences (π, π̂) where the first is the current sequence

of jobs and the second sequence is the waiting list of jobs. A job is selected in line 9
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and this selection is posted to the solver only if its preceding jobs (PRj) have been

scheduled. This is done in line 11, updateJobs(π̄, π̂, j). Here, the sequence π̄, the

waiting list π̂ and selected job j are passed as arguments. Once j is scheduled, all

those waiting jobs that are now free to be placed are immediately scheduled. If a

job is not scheduled it is placed in the waiting list (line 13). The new sequence is

placed in the beam if it is either feasible or if the new selection is waiting (line 15).

The algorithm then proceeds as usual by using estimates at line 19 to eliminate

non-promising solutions.

With the SMJS problem, biasing the search more strongly with the initial heuris-

tic selection was advantageous. This method, however, also suffered from the in-

ability of the algorithm to examine certain solutions due to this scheme, potentially

ruling out optimal areas of the search space. Therefore, to avoid this problem the

greedy heuristic selection step is discarded. Furthermore, the three stage selection

was tested with this problem, unsuccessfully, suggesting that the heuristics tested for

this problem are not as effective here as the heuristics were for the SMJS problem.

5.2.7 Experimental Setting

The results for experiments with ACS, Beam-ACS, CP-ACS, CP-MMAS and CP-

Beam-ACS are reported here. We also compare these results to the original SA

algorithm. In order to select an appropriate ACO variant we first conducted ex-

periments with CP-ACS and compared the results to CP-MMAS. As discussed

earlier, this was to determine which implementation is more effective on the hard

constrained version of the problem.

The parameter settings for q0 and ρ were obtained as follows. A problem instance

from each machine size was selected and run for 30 minutes with a cross product

of values from q0 = {0.3, 0.5, 1.0} and ρ = {0.1, 0.01} to get an idea of which

parameters were best suited to this problem. Given these tests, q0 = 1.0 and ρ = 0.1

were selected for ACS. The was no clear advantage for CP-MMAS and therefore

q0 = 0.5 and ρ = 0.1 were selected. The CPACO algorithms constructed 10 solutions

per iteration and for consistency, θ was set to 10 for CP-Beam-ACS. µ = 3.0 was also

found to be the best multiplier after tuning by hand. The number of samples (N s)

was set to 5. This small number was chosen since a call to the solver is relatively

small for this problem and a cost effective estimate can be obtained relatively quickly

if only 5 samples are computed per variable. 30 runs were conducted for each

application of the algorithm for 60 minutes to every instance.
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Algorithm 14 Procedure to determine hard due times
1: input: A MMJS instance m
2: initialize solver, l = 0.0, status = fail
3: d̄i = (|M| − 1)× (ri + pi),∀i ∈ {1, . . . ,J }
4: d̄i ← d̄i + (rj + pj)× 0.1× (rj + pj),∀i ∈ {1, . . . ,J ), ∀j ∈ {1, . . . , PR(J )i}
5: while status = fail do
6: λ← λ+ 0.1
7: d̄i = di,∀i ∈ {1, . . . , PR(J )}
8: d̄i ← d̄i + λ× (rj + pj),∀i ∈ {1, . . . ,J ),∀j ∈ {1, . . . , PR(J )i}
9: status = Solve(m)

10: end while
11: λ← λ× k
12: d̄i ← d̄i + λ× (rj + pj),∀i ∈ {1, . . . ,J ),∀j ∈ {1, . . . , PR(J )i}
13: output: d̂i,∀i ∈ {1, . . . ,J }

Hard Due Times

The datasets were obtained from Singh & Ernst (2010). However, these instances

did not include hard due times and the strength of the CP model is enhanced when

this type of constraint is present in the model. Thus, we incorporate hard due times

and determine them as follows.

The problem instance is setup with a constraint solver with all the basic con-

straints and the following steps are repeated until the solver state returned is feasible

(see Algorithm 14). Initially, a job i has its hard due time set to (|M|−1)× (ri+pi)

(line 3). The idea here is that the multiplier (|M|−1) provides a substantial cushion

for the job to complete without violating the constraints. This however may not be

sufficient for the jobs with precedences and therefore these jobs have their hard due

time set to the sum of all preceding jobs release times plus processing times (line 4).

At this stage we only modify the hard due times for those jobs with precedences.

Specifically, the algorithm iteratively increases the level (λ) until a the solver state

returns true. Here, we are sure that the solver starts with a feasible state but this

does not imply that a feasible solution exists. Therefore, as a final step we further

increase l ← l × k at line 11 and reset the hard due times. In this study, we vary

k depending on the problem size, i.e., |M| ≤ 4 ⇒ k = 2, 4 ≤ |M| ≤ 9 ⇒ k = 3 or

10 ≤ |M| ≤ 12⇒ k = 4.

More sophisticated methods may be used to obtain these hard due times, how-

ever, the procedure followed here suffices for the purpose of generating hard instances

to solve. Moreover, by tweaking the parameter λ we are also able to create problems

of varying hardness.
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5.2.8 Results

The major results of this chapter considering optimality and feasibility can be sum-

marised as follows.

• CP-ACS and CP-Beam-ACS are the best performing algorithms

– CP-Beam-ACS is most effective with respect to feasibility, stochastic sam-

pling providing a clear advantage

– CP-ACS is by a small margin the best performing algorithm where fea-

sibility is found

• ACS is surprisingly effective, but not as competitive as CP-ACS given the

same number of labeling steps

• Beam-ACS preforms poorly: stochastic sampling does not provide an advan-

tage without CP

Overall we see that ACS, CP-ACS and CP-Beam-ACS are all effective algorithms

when solving the MMJS problem. CP-ACS is effective for the hard constrained

version of the problem but is slow due to the solver overhead. This is remedied by

CP-Beam-ACS which is as effective as CP-ACS but is able to achieve this in a small

amount of time. When considering feasibility, CP-Beam-ACS is the most effective

method for solving this problem. In terms of solution quality, ACS is most effective

when solutions are easily found, otherwise CP-Beam-ACS is still the most effective

algorithm.

The first set of results are presented in Table 5.4. Here we see the comparison

between the two variants of ACO and CP-Beam-ACS. The first column specifies the

problem instance where the first index is the number of machines and the second

index is an identifier. For each algorithm, we report the best (best) solution found

across all runs, the average (mean) solution quality across the runs, the associated

standard deviations (sd), the number of times the algorithm fails to find feasibility

(fail), the number of CP labeling steps (steps) and the number of iterations (iter.)

executed by the algorithm in the allowed time. We report CP labeling steps as

opposed to total labeling steps since we compare the algorithms in terms of how

many calls to the solver are made in the allowed time. The aim will be to determine

if a difference in a large number of CP calls is useful in the context of this problem.

The best results obtained in a table for an instance (including mean and feasibility)

are marked in bold face if they statistically significant at p = 0.05.

The results show that CP-ACS is the preferred implementation over CP-MMAS

for this problem. This is true when considering feasibility and solution quality.
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Therefore, ACS is used in the implementation of the beam search - CP variant.

These results are reported in the last six columns of Table 5.4.

The estimate used for CP-Beam-ACS was stochastic sampling and it is used in

a similar manner as it was used in CP-Beam-MMAS for the SMJS problem. The

basic idea is start with a partial solution and complete it by sampling the pheromone

trails using Equation 5.7 and Equation 5.8. This is done N s times. The samples

provide two estimates to the partial solutions. Firstly, they provide an estimate

of the number of violations of the hard due times determined from the complete

sequence. These samples are constructed by relaxing the hard due time constraint

and the lowest number of violations among the samples is returned as the estimate.

The second estimate is the minimum value of the weighted tardiness across the

samples. More formally,

φi = (minj∈Ns(ν(πj)),minj∈Ns(f(πj)) (5.11)

for the ith variable and j ∈ N s . We prioritize by minimizing over ν(π) as feasibility

is necessary before we can optimize f(πj) as we do with the higher level ACS search.

Alternative estimates are analyzed in Chapter 6.

The results here show that CP-Beam-ACS is the best method for feasibility and

optimality on several problem instances. Differences between the algorithms are also

exaggerated for the larger instances with more machines and jobs. Since both algo-

rithms use CP the improved feasibility can be attributed to the estimate provided

by stochastic sampling. It is also worth noting that CP-Beam-ACS compared to

CP-ACS completes far fewer iterations. This amounts to fewer pheromone updates

and slower algorithm convergence which is traded-off for a more complex single iter-

ation with beam search. Additionally, CP-Beam-ACS completes fewer CP labeling

steps. This is consistent with the number of iterations, i.e., for feasible solutions

CP-Beam-ACS completes three times the number of CP labeling steps (µ = 3.0)

per iteration but CP-ACS on average completes more than three times the number

of iterations.

The results are also plotted in Figure 5.6 and Figure 5.7. Figure 5.6 plots the

cumulative failures for each instance for ACS, CP-ACS and CP-Beam-ACS. This

figure shows that ACS and CP-ACS fail on over 30% of the total number of runs

(> 10/30) where CP-Beam-ACS only fails on about 15% of the runs. If CP-Beam-

ACS fails on every run then so do the other algorithms. Figure 5.7 shows the %

difference to the best algorithm in terms of solution quality for all the instances where

feasibility is found averaged across machine size. CP-ACS is the best performing

algorithm in this regard. However, there are several instances which can not be

compared since CP-ACS does not find solutions for these instances.
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Experiments were also conducted to determine how simulated annealing, ACS

and Beam-ACS without any CP component perform on these problem instances.

The result are reported in Table 5.5. Firstly, considering SA, the result show that

a large number of problem instances (19/30) are too hard for SA to find feasibility.

Even for those problem where feasibility is found SA fails several times (e.g. 6-28

and 9-20). Surprisingly, SA even fails on some of the small instances such as 4-42

where every other algorithm finds feasibility.
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Figure 5.6: Cumulative failure results for ACS, CP-ACS and CP-Beam-ACS. ACS
and CP-ACS fail on several instances where their performance is similar with CP-
ACS performing slightly better. For each algorithm, each block corresponds to one
problem instance where the shading/colour indicates the problem instance and the
height of each block indicates the number of failures.

ACS however, performs competitively with CP-ACS . CP-ACS is superior in

terms of finding feasibility on some problems (e.g., 6-10 and 7-47) but is surprisingly
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Figure 5.7: Results for CP-ACS and CP-Beam-ACS for those instances where at
least one feasible solution was found. For each algorithm, the % difference to the
best performing algorithm is shown averaged across each problem size.

worse on one instance - 8-3. For this instance, CP-ACS finds no feasible solution

whereas ACS almost always fails but does find feasibility. On close examination it

can be seen that ACS performs a much larger number of iterations and the larger

number pheromone updates are able to lead the algorithm to feasibility like the CP

component of CP-ACS similarly does. Thus, we conducted experiments with ACS

and CP-ACS given both algorithms the same number of iterations (3000 iterations).

These results are presented in Table 5.6. Here it can be observed that CP-ACS is

in fact superior on most problems where feasibility is an issue. Again, ACS find a

solution for instance 8-3 on one run while CP-ACS does not. Generally, though,

both algorithms mostly fail on this instance. In comparison with the previous study
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Table 5.6: ACS and CP-ACS run for 3000 iterations. Statistically significant results
(p = 0.05) are marked in boldface.

ACS CP-ACS

best mean sd fail best mean sd fail

3 - 23 158.08 158.14 0.15 0.00 158.08 158.08 0.00 0.00
3 - 53 72.53 72.53 0.00 0.00 72.53 72.53 0.00 0.00
3 - 5 511.78 513.54 2.61 0.00 511.78 512.95 2.25 0.00
4 - 28 23.94 25.79 1.83 0.00 23.94 24.82 1.25 0.00
4 - 42 128.65 154.25 40.51 0.37 125.29 157.69 17.02 0.00
4 - 73 76.10 85.47 12.51 0.23 73.30 84.16 10.39 0.00
5 - 21 200.61 209.16 6.20 0.00 201.27 206.13 4.31 0.00
5 - 62 324.11 433.97 99.49 0.40 315.20 374.85 52.56 0.00
5 - 7 1.00 1.00
6 - 10 1198.59 1198.59 885.03 0.97 1149.24 1280.29 73.56 0.73
6 - 28 255.43 286.44 16.60 0.00 252.45 280.70 15.08 0.00
6 - 58 368.30 385.27 78.98 0.57 328.31 352.92 14.36 0.00
7 - 15 1.00 1.00
7 - 23 632.56 696.77 31.20 0.03 621.40 679.75 26.88 0.00
7 - 47 1.00 1.00
8 - 3 1456.15 1552.45 626.05 0.90 1.00
8 - 53 494.86 531.40 18.40 0.00 498.74 524.02 16.47 0.00
8 - 77 1283.76 1352.90 37.35 0.00 1293.70 1349.90 32.07 0.00
9 - 20 1020.93 1053.39 26.72 0.00 992.55 1047.93 34.52 0.00
9 - 22 1230.37 1280.16 31.29 0.00 1223.70 1276.36 30.53 0.00
9 - 47 1254.09 1323.17 40.33 0.00 1237.84 1309.68 39.15 0.00
10 - 13 1.00 1.00
10 - 77 1.00 1.00
10 - 7 1.00 1.00
11 - 21 1146.78 1229.43 51.16 0.00 1123.84 1191.76 46.56 0.00
11 - 56 2129.98 2285.47 129.19 0.10 2155.89 2286.36 110.84 0.00
11 - 63 1.00 3121.37 3121.37 0.00 0.97
12 - 14 1.00 3621.91 3644.99 23.08 0.93
12 - 36 4944.91 4944.91 2002.02 0.97 1.00
12 - 80 1.00 3225.40 3459.17 151.56 0.77

for instances with eight or more machines where CP-ACS complete fewer than 3000

iteration always, CP-Beam-ACS is still more effective than CP-ACS even though

the algorithm requires many fewer iterations.

Beam-ACS however, does not provide any feasibility advantage over ACS. The

estimate used here again is based on stochastic sampling and here the repeated

pheromone updates (measured by number of iterations) are as effective in terms

of feasibility. In fact, ACS finds feasible solutions on occasions for instance 12-14

whereas Beam-ACS does not find any feasible solutions for this instance. In terms of

solution quality, Beam-ACS is more effective on small-medium size instances while

ACS is more effective on the larger instances. However, the differences between the

solution qualities are relatively small.
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No Learning and no Local Search

Additional experiments were conducted to demonstrate that pheromone learning

contributes to the search. For this implementation, the pheromone updates are

turned off. This amounts to repeated solution construction from uniform distri-

butions across all jobs at each variable. Following this, local search is applied as

described above to the best solution found at each iteration. The results show that

ACS without learning is not effective on this problem in terms of feasibility and

solution quality.

A final experiment was to determine if the local search does in fact prove useful

or not. Here, we turn off the local search altogether when applying the algorithm

to all the instances. As the results show, the local search component does indeed

contribute to the solution quality. Feasibility is also more easily found for the small

instances, however, this effect is not seen with the larger instances.

Table 5.7 presents the results for ACS without learning (ACS-NL) and without

local search (ACS-NLS). These results show that learning plays a major part in

identifying feasibility and in solution quality. While (ACS-NL) finds feasibility al-

most always for the smaller instances, the solution quality found is poor compared

to ACS with learning.

The results without local search show that feasibility is not significantly affected

here. Local search is able to improve feasibility for the smaller instances, e.g., in-

stances 4-42 and 4-73. However, this does not seem to be the case for larger instances

(≥ 8 machines). In fact feasibility is found on some instances where feasibility was

not found earlier with local search (e.g., 12-36 and 12-80). This can be attributed

to the number of pheromone updates due to the number of iterations which increase

by a one or two orders of magnitude across all problems. Hence, for larger problem

instances, more frequent pheromone updates lead to greater feasibility. In terms

of solution quality, the local search component almost always produces improved

results (≥ 4 machines).

CP Propagation Costs

In order to further assess the cost of stochastic sampling versus CP solver costs, we

examine a single problem instances from each machine size. For each instance, 10

iterations are allowed where the time required for a CP call (i.e., calling the solver

and obtaining its state) and the time required for stochastic sampling are measured

independently. The average results across the ten runs are reported in Figure 5.8.

This figure shows that in general CP calls for this problem are much quicker than

stochastic sampling. The cost for CP calls increase by a constant factor with the
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Table 5.7: ACS without learning and with local search. Statistically significant
results (p = 0.05) are marked in boldface.

ACS-NL ACS-NLS

best mean sd fail iter. best mean sd fail iter.

3 - 23 158.59 159.73 1.03 0.00 4.27E4 158.08 159.97 2.89 0.00 1.63E5
3 - 53 72.53 72.53 0.00 0.00 4.99E3 72.53 72.53 0.00 0.00 3.84E4
3 - 5 533.53 549.79 9.29 0.00 3.19E4 511.78 527.37 23.55 0.00 1.11E5
4 - 28 29.35 30.09 0.59 0.00 3.79E4 23.94 27.07 2.31 0.00 2.12E5
4 - 42 204.60 268.35 104.92 0.27 2.97E4 125.29 163.36 27.65 0.13 3.05E5
4 - 73 1.00 0.00E0 76.10 88.31 19.97 0.23 2.66E5
5 - 21 244.86 262.08 8.07 0.00 2.78E4 200.61 215.67 8.19 0.00 1.57E5
5 - 62 1.00 0.00E0 325.30 411.61 71.18 0.50 1.56E5
5 - 7 1.00 0.00E0 1.00 0.00E0
6 - 10 1.00 0.00E0 1.00 0.00E0
6 - 28 321.60 357.51 15.64 0.00 2.65E4 261.26 298.42 28.77 0.00 1.69E5
6 - 58 1.00 0.00E0 355.68 407.59 75.88 0.50 1.80E5
7 - 15 1.00 0.00E0 1.00 0.00E0
7 - 23 918.66 1028.90 165.56 0.37 1.45E4 662.58 728.79 33.38 0.03 1.47E5
7 - 47 1.00 0.00E0 1.00 0.00E0
8 - 3 1.00 0.00E0 1496.84 1496.84 1574.60 0.97 5.64E4
8 - 53 572.17 603.34 12.93 0.00 1.33E4 510.87 549.34 23.78 0.00 1.25E5
8 - 77 1610.71 1694.76 53.87 0.00 1.01E4 1324.74 1410.66 55.73 0.00 1.23E5
9 - 20 1393.34 1464.79 48.04 0.00 9.79E3 1023.57 1145.55 67.44 0.00 1.09E5
9 - 22 1473.97 1501.93 13.84 0.00 6.63E3 1270.71 1328.89 30.11 0.00 1.10E5
9 - 47 1660.98 1697.08 19.43 0.00 5.63E3 1313.30 1446.77 71.65 0.00 9.32E4
10 - 13 1.00 0.00E0 1.00 0.00E0
10 - 77 1.00 0.00E0 1.00 0.00E0
10 - 7 1.00 0.00E0 1.00 0.00E0
11 - 21 1679.39 1915.76 171.40 0.03 8.49E3 1225.69 1326.67 68.97 0.00 1.05E5
11 - 56 1.00 0.00E0 2105.31 2376.21 165.86 0.33 7.52E4
11 - 63 1.00 0.00E0 1.00 0.00E0
12 - 14 1.00 0.00E0 1.00 0.00E0
12 - 36 1.00 0.00E0 4421.56 4670.30 1092.16 0.90 7.53E4
12 - 80 1.00 0.00E0 3246.14 3297.06 649.66 0.93 8.44E4
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problem size whereas the stochastic sampling costs increase approximately quadrat-

ically as expected. Note that the variation in the costs for stochastic sampling is

attributable to the failure to find feasibility for some instances, e.g. 10 machines.
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Figure 5.8: This figure shows the time needed (seconds) for CP (CP solver calls)
versus SS (stochastic sampling). An Θ(n2) trend-line is also shown. A randomly
selected instance from each machine size was run for 10 iterations and the average
results across the 10 runs are reported here. Stochastic sampling clearly requires
a greater amount of time compared to the CP calls and this difference generally
increases with machine size. Note that the results here do not require that feasible
solutions are found.

5.2.9 Discussion

The results show that CP-Beam-ACS with stochastic sampling is the most effective

algorithm finding feasibility on more instances than the other algorithms. If feasi-

bility is found CP-ACS is the preferred algorithm as it is able to find higher quality

solutions.

Also seen in the results (especially for large problems) are that the CP labeling

steps and iterations completed by CP-Beam-ACS are a lot fewer than CP-ACS.

This can be explained by the cost of stochastic sampling O(n2 ×m) where we have
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n variables and m samples. If a call to the CP solver is inexpensive, then as problem

instances get larger, the cost of stochastic sampling is going to outweigh the cost of

the solver. As we have seen with the SMJS problem, we are effectively trading off

CP solving time with stochastic sampling.

The question as to whether this is a useful trade-off arises. Stochastic sampling

proves to be effective for MMJS particularly with respect to feasibility. Given that

the CP model is relatively simple, we see that the feasibility estimate provide a

distinct advantage leading CP-Beam-ACS into feasible regions. This leads to the

question of the usefulness of the CP model. CP-ACS outperforms ACS overall in

terms of feasibility demonstrating the need for CP. However, stochastic sampling on

its own does not provide a feasibility advantage. Thus the best combination in the

context of feasibility is CP combined with stochastic sampling.

We considered a relatively simple version of local search here. More complex

methods such as variable neighbourhood descent may be more effective than the

constantly applying the two neighbourhood moves suggested above. Furthermore,

the simulated annealing heuristic may also be useful here. However, the aim here

is to examine the effectiveness of parallel solution construction and while the local

search may be improved it is independent of the solution construction and is not

expected to have any effect in this component of the algorithm (e.g. biasing the

solution construction in the beam).

5.2.10 Conclusion

In this study we apply ACS, CP-ACS and CP-Beam-ACS to a resource constrained

multiple machine job scheduling problem. We see that CP-Beam-ACS using stochas-

tic sampling is the most effective algorithm here finding feasible solutions where the

other algorithms struggle. ACS and CP-ACS are both effective when feasible solu-

tions are found often outperforming CP-Beam-ACS.

As opposed to (Thiruvady et al., 2009) for SMJS, we see here that CP-Beam-

ACS provides a feasibility advantage compared to an optimality advantage. This

is accounted for by considering that stochastic sampling provides a feasibility esti-

mate and in the absence of a strong CP model (as we see for the current problem)

stochastic sampling provides guidance into feasible regions. Also seen here is that

there are many fewer iterations conducted by CP-Beam-ACS compared to the other

algorithms due to the cost of stochastic sampling. This is reflected in the results of

solution quality where if feasible solutions are found CP-ACS is the best algorithm.

This study further validates pheromone model for sequences for such scheduling

problems in addition to CP models for the same problems. It is already known

that such models have been effective on similar problems independently (den Besten
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et al., 2000; Bauer, Bullnheimer, Hartl and Strauss, 2000). Hybridizing these models

proves to be useful and furthermore incorporating the beam component further

enhances the performance of the algorithm.

The form of local search used here is relatively näıve, i.e., repeated application

of random swapping and β−sampling. We have also shown that the local search

is useful. Therefore, a more sophisticated local search, such as variable neighbour-

hood descent, might provide improved results and this component of the algorithm

warrants testing in the future.
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5.3 Car Sequencing

The car sequencing problem has been actively researched since the mid 1980s with

one the first studies being (Parrello, Kebat and Wos, 1986). The problem requires a

number of cars to be scheduled on an assembly line (Dincbus, Simonis and Henten-

ryck, 1988; Gent, 1998; Hentenryck, Simonis and Dincbus, 1992; Parrello et al., 1986)

and this problem has become a benchmark CSP problem (Gent and Walsh, 1999).

Each car requires a number of options (e.g., air conditioning, sunroof, radio, etc.)

where each option is installed at a particular station. The stations can only handle

a limited number of cars at a time. Hence, cars requiring the same options must be

sequenced such that no station’s capacity is exceeded. The satisfiability problem of

identifying such a sequence is known to be NP-hard (Kis, 2004).

As a pure satisfiability problem, car sequencing has been effectively tackled with

constraint and integer programming approaches (Dincbus et al., 1988; Gravel, Gagné

and Price, 2004; Hentenryck et al., 1992). In (Dincbus et al., 1988), it was shown

that a pure CP approach is very effective on this problem by sequencing up to 200

cars within five minutes, even for those instances with high utilization of options

(e.g. 90 %). In (Gravel et al., 2004), an integer programming approach was proposed

where the number of violated constraints is minimized subject to a number of linear

constraints.

ACO on its own has also been successful with satisfaction problems in the

past (Solnon, 2002; Solnon, 2008; Roli, Blum and Dorigo, 2001). These approaches

are based on relaxing several constraints during solution construction and mini-

mizing violations as the objective. In (Solnon, 2008), it was shown that ACO on

its own can be effective for small instances of car sequencing whereas approaches

based on local search are more effective on larger instances. Transferring Meyer &

Ernst’s (Meyer and Ernst, 2004) approach to satisfaction problems, Kichane et al.

(Khichane et al., 2008) use a CP approach which is aided by ACO when attempting

to find feasibility. They show excellent results on large and hard instances of the

problem (Perron and Shaw, 2004).

In this study, we explore an optimization version of the car sequencing prob-

lem (Bautista, Pereira and Adenso-Dı́az, 2008): feasible solutions to the car se-

quencing problem must be found and additionally the utilization of options must

be modulated within sub-sequences. Note that a pure beam search approach is

proposed in (Bautista et al., 2008), but it focuses on feasibility as opposed to the

additional objective. We examine CP-Beam-ACO and CP-Beam-MMAS on this

optimization problem by also focusing on the second objective. We also consider

non-CP approaches (ACO and Beam-ACO (Blum, 2005)) but, as expected, both

approaches struggle with obtaining feasibility.
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5.3.1 Problem Definition

The formal definition of the car sequencing problem is as follows (Solnon, Cung,

Nguyen and Artigues, 2008). A number of cars V = {v1, . . . , vn} and options O =

{o1, . . . , om} are given. Each car requires a number of options specified by rij ∈
{0, 1},∀i ∈ V , j ∈ O where rij = 1 states that car i requires option j. We are also

given (pi, qi), i ∈ O which impose constraints that require that at most pi cars may

use option oi in a subsequence of length qi satisfying the capacity of a station. The

cars are grouped into classes C requiring the same options such that for all l ∈ C,
i,k ∈ l, j ∈ O : rij = rkj. We represent a solution to this problem by a sequence π

which consists of n variables each of which have domains {c1, . . . , cl} such that the

option constraints are satisfied.

Like any satisfiability problem, the car sequencing problem can be framed as

an optimization problem. Essentially, for constructive methods, the objective is

to maximize the number of decision variables assigned such that constraints are

satisfied. The search terminates when all decision variables are assigned, i.e. all cars

are sequenced. Additionally, departing from satisfiability only, (Bautista et al., 2008)

considers further aspects of the problem which can be optimized. They define two

different but related measures based on feasibility and how well the options are

modulated across sub-sequences.

The first measure is the upper over-assignment of a sequence which is the num-

ber of times an option appears over the allowed number when the sub-sequence

constraint is violated:

uoa(π) =
m∑
i=1

n∑
j=1

aij × yij(π) (5.12)

where

yij(π) = max

[
0,−min(j, pi) +

j∑
k=ui(j)

rπki

]
(5.13)

where ui(j) = max(1, j+1−qi). The aij terms can be seen as penalties for violating

the constraints. Here, we do not specify aij, because we treat this component as a

hard constraint. Essentially, the sum in the equation above adds up the number of

options that are used in a subsequence from j + 1 − qi to j. Of course, if we have

not sequenced qi cars yet we only consider the smaller size subsequence. uoa(π) = 0

implies that a feasible solution to the problem has been found since we are only

summing over the quantity of the violations. Similarly, upper under-assignment of

a sequence can be defined as

uua(π) =
m∑
i=1

n∑
j=1

bij × zij(π) (5.14)
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where

zij(π) = max

[
0,min(j, pi)−

j∑
k=ui(j)

rπki

]
(5.15)

where uij is defined earlier. Via bij, we are able to modulate the usage of options

in the sub-sequences. For our experiments, we randomly select bij ∈ (0, 1]. This

in effect imposes preferences on those sub-sequences where all the allowed options

should be sequenced or as many of them as possible. Given these two measures, we

can define the optimization version of the problem to minimize

uoa(π) + uua(π) (5.16)

5.3.2 Methods

We first discuss the ACO variant used in this study and the pheromone models that

have been attempted for this problem. From these, we select the most plausible one.

A CP model is then suggested based on previous studies and the integration of this

model into MMAS is briefly discussed. To determine which MMAS variants are

effective and which parameter settings are optimal we make use of the experience

of previous studies.

ACO and CP

In their study on CP andMMAS (Khichane et al., 2008) used an implementation

ofMMAS for the car sequencing problem and examined various pheromone models.

Two straightforward models can be defined as follows. The first is a default model

which constructs a sequence based on the class of cars. That is, a sequence contains

as many variables as there are cars and each variable has domain values that belong

to the car classes. This model consists of O(|V |×|C|) pheromone values. The second

obvious model, classes, is to select a car class for a variable given the car class in

the previously assigned variable (O(|C|2) pheromone values). Finally, (Khichane

et al., 2008) explores a third pheromone model, cars, which associates trails with

every pair of car classes and the number of remaining unassigned cars in each of

these classes (O(|C|4) pheromone values).

In their study, (Khichane et al., 2008) found that their cars model was the best

performing model by a small margin, despite the large number of pheromones that

need to be learned for this model. Surprisingly, the classes model was worse than

the default model. Given these results, we chose to use the default model. It is

proven to be more effective than the classes model and the cars model is considered

too large given the large size of the pheromone trails for larger instances with few

iterations. This is particularly true for experiments with large instances where a
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Algorithm 15 CP-MMAS for the car sequencing problem
1: input: A car sequencing instance
2: πbs := null
3: initialize T
4: while termination conditions not satisfied do
5: Siter := ∅, S := ∅
6: for j = 1 to nants do
7: πj := ConstructSequence()
8: Siter := Siter ∪ {πj}
9: end for

10: S := S ∪ argmax{f(π)|π ∈ Siter}
11: πbs = Update(S)
12: T = PheromoneUpdate(S)
13: end while
14: output: πbs

time limit is given as the terminating criterion and the CP-based algorithms only

complete a few iterations or few pheromone updates. All algorithms compared in

this study make use of the same pheromone model and potential differences caused

by the pheromone models can be expected to have similar effects across all the

algorithms.

The CP-MMAS and CP-Beam-MMAS algorithms from Chapter 4 are re-

stated for this problem here partly for readability and mainly for subtle differences

between the implementations. The high-level MMAS algorithm is presented in

Algorithm 15. The pheromone trails for the default model consist of pheromones τij

where i is the position or variable in the sequence (i.e., πi) and j is a class.8 The

algorithm is a straightforward version of the MMAS algorithm and the details of

the specific procedures are discussed below. All parameter settings including initial

values are adopted from (Khichane et al., 2008).

ConstructSequence(): The permutation π of the jobs is constructed by selecting a car

class for each variable beginning with the first variable π1. There are two possible

solution constructions allowed here based on whether CP is used or not. For the

non-CP algorithms, a solution is considered complete when all the variables have car

classes assigned to them. For the CP algorithms, variables are bound starting with

π1 and the construction terminates when either all the variables have been assigned

or when the partial solution is recognised as infeasible.

Algorithm 16 shows the procedure for building a single solution with CP which

may substitute line 7 in Algorithm 15. This procedure incrementally adds com-

ponents to the sequence π by making sure that the choices are feasible. Between

lines 4 and 9 single level back-tracking is used and all possible domain values (D =

8Note there is no distinction made between cars of the same class in the default model.
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Algorithm 16 Construct solutions using CP

1: i ← 0, feasible ← true
2: while i ≤ n & feasible do
3: i← i+ 1
4: D = domain(πi)
5: repeat
6: j = select class(D, T )
7: feasible = post(πi ← j)
8: if not(feasible) then post(πi 6= j)
9: D = D \ j

10: until D 6= ∅ ∨ feasible
11: end while
12: Return π

domain(πi)) are tested for a variable until a feasible choice is found. If no feasible

solution is found a partial solution with not all variables assigned may be returned.

The selection of a car class proceeds in standard ant colony system fashion (pro-

cedure select class(D,τ)). We generate a random number q ∈ (0, 1] and compare

this with a pre-defined parameter q0. For the ith variable, πi, if q < q0, a job k for

variable i in π is greedily selected according to

k = max
j∈C

τij × ηβj (5.17)

otherwise, πi = k is selected with probability

p(πi = k) =
τik × ηβk∑

j∈C

(
τij × ηβj

) (5.18)

where the heuristic factor ηβk for selecting car class k for variable i of permutation π.

β is a factor that specifies the relative contribution of the heuristic weight and will be

defined in the results section. For ηk, We use the dynamic sum of utilisation (DSU)

rates first suggested by Smith (Smith, 1997) and shown to be the best performing

heuristic by Gottlieb et al. (Gottlieb, Puchta and Solnon, 2003). The idea is to

make use of the utilization rate of an option oi which is defined as the ratio of the

number of cars that require oi to the maximum number of cars that can have oi

while satisfying its capacity constraint:

ηk =
∑

oj∈ro(c)

rv(oj, nj)

n− i
(5.19)

where nj are the number of cars that require option oj but have not been sequenced

in π yet. The set of options needed by car class c is specified by ro(c). n− i is the
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number of variables left to assign in the partial solution. rv(oj, nj) is the utilization

rate of option oj, which is the ratio of the total number of cars nj requiring option oj

to the maximum number of variables for installing the option satisfying the capacity

of a station (Khichane et al., 2008). It is computed as follows:

rv(oj, nj) =

{
qj×nj
pj
− (qj − pj) if nj%pj = 0

qj×(nj−nj%pj)
pj

+ nj%pj otherwise
(5.20)

πbs = Update(S): This procedure sets πbs to the best solution in S. S consists of

the best solutions from the current iteration. The cost of a solution is based on two

measures f(πi), the number of variables assigned, and uua(πi). We first maximize

over f() and the minimize over uua(). Therefore, if πi ∈ S satisfies f(πi) > f(πbs)

or f(πi) = f(πbs)∧uua(πi) < uua(πbs) then πbs is set to πi. Note that the solutions

in S have the same number of variables assigned but may have different uua costs.

T = PheromoneUpdate(πbs): This algorithm updates all the solutions that resulted

in the best cost for the current iteration. All components (i, j) appearing in the list

of best solutions are used to update the corresponding components in the pheromone

matrix:

τij = τij × ρ+ δS (5.21)

where δS = 1/(1+f(πbs)−f(πib)). ρ is the learning rate which specifies how quickly

the pheromones converge to the best solution and is set to be 0.02 for this study.

Here, the pheromones in the CP based algorithms are also rewarded.

The Constraint Programming Model

Since Dincbus et al. (1988) applied CP to car sequencing, it has been a benchmark

problem for CP solvers. Now various CP solvers include the high level sequence

constraint with various filtering algorithms for this constraint being proposed (Regin

and Puget, 1997; van Hoeve, Pesant, Rousseau and Sabharwal, 2006).

The CP model for this problem make use of two high level constraints. The

sequence constraint sequence(π, s, q, l, h):∧|π|−q
i=0 among(〈πi, . . . , πi+q−1〉, s, l, h) (Gecode, 2010). The among(·) constraint re-

quires that the number of occurrences of πj = s is less than u and greater than l.

Using the among(·) constraint, the sequence constraint enforces this constraint for

every subsequence of π of size q.

The second high-level constraint used is count(π, |cl|) which specifies that the

number of cars of class cl in π must equal |cl|. By combining these constraints, the

CP model is able to achieve strong propagation. Furthermore, these constraints are

often solved very quickly. Details will be provided in the results section.
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Algorithm 17 Probabilistic Beam Search with CP

1: input: (θ, µ, T )
2: B0 = {π1 = (), . . . , πθ = ()}
3: t = 0
4: while t < n and |Bt| > 0 do
5: for i ∈ Bt do
6: k ← 0, D = domain(πit)
7: while k < µ ∧D 6= ∅ do
8: π̂ = πi
9: j = select class(D,τ)

10: feasible = post(πit ← j)
11: if (feasible) then Bt+1 = Bt+1 ∪ πk
12: k ← k + 1, D = D \ j
13: end while
14: end for
15: Bt+1 = Reduce(Bt+1, θ)
16: t← t+ 1
17: end while
18: output: argmax{f(π) | π ∈ Bn−1}

CP-Beam-MMAS

CP-Beam-MMAS is implemented in a similar fashion to the implementation

seen in Chapter 4. Algorithm 17 replaces line 7 in Algorithm 15. Here, we start

with a beam Bt with θ (initially empty) solutions. For each solution in the beam, µ

feasible extensions are constructed and added to Bt+1. At this stage, Bt+1 contains

θ × µ partial solutions if these many solutions were found. From among these, we

reduce the number of solutions to θ (line 15) using a cost estimate. Here, a cost

estimate is computed for each partial solution in Bt+1. From these solutions, the best

θ solutions are selected in a greedy fashion. The procedure concludes by returning

the solution with the best quality.

The estimate used for the beam component of CP-Beam-ACO is analysed later.

Here, we briefly describe stochastic sampling adapted for this problem. The basic

idea is to consider a partial solution and to complete the solution in plain ACO man-

ner by disregarding the constraints on the options. We obtain a complete solution

which has uoa and uua cost. Given a number of these samples for each solution,

the best uoa and uua costs can be used as an estimate of the true cost for the non-

relaxed solution. In (Thiruvady et al., 2009) it was shown that estimates obtained

in such a manner can be effective and sometimes even more effective than problem

specific lower bounds.
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5.3.3 Experimental Setting

Results for experiments with MMAS, CP-MMAS and CP-Beam-MMAS were

conducted and are reported here. The parameters were determined from (Khichane

et al., 2008) for theMMAS and CP-MMAS algorithms and (Bautista et al., 2008)

for CP-Beam-MMAS. For all algorithms, ρ = 0.02 and β = 6.0. For beam search,

(Bautista et al., 2008) showed that using beam widths of size 25 were effective on

the problem and generally improving results were obtained with increasing beam

widths as expected. However, their algorithm was run for a single iteration without

any learning component. In order to allow for a large number of pheromone updates

or effective learning, we chose na = 10 for CP-MMAS and θ = 10, µ = 3.0 for

CP-Beam-MMAS. In initial experiments we tested values of µ = {2.0, 3.0, 4.0, 5.0}
and found that µ = 3.0 was slightly improved compared to µ = 2.0 and µ = 4.0.

However, µ = 5.0 was significantly worse. We used 10 samples obtain the estimate

for stochastic sampling.

Khichane et al. (2008) (Khichane et al., 2008) conducted studies on various

datasets from the CSP library (Gent and Walsh, 1999). They found that most in-

stances were easily solved by CP-MMAS and focused their study on the harder

datasets used by (Perron and Shaw, 2004). Therefore, in this study we consider

instances only from this harder dataset. Furthermore, we consider a subset of in-

stances, six each from instances with 100, 500 and 600 cars and conduct 30 runs per

instance. Each run was given 15 hours of execution time and all experiments were

conducted on the Monash Sun Grid and the Enterprisegrid using Nimrod (Abramson

et al., 2000).

5.3.4 Results

We have testedMMAS, Beam-MMAS and CP-Beam-MMAS. The major results

of this chapter can be summarised as follows.

• CP-Beam-MMAS is the best performing algorithm and is superior to CP-

MMAS on 15 out of 18 instances. CP-MMAS and CP-Beam-MMAS

perform equally with respect to feasibility with CP-MMAS having a slight

advantage

• MMAS performs poorly and never finds feasibility

• Two different implementations of Beam-MMAS were attempted. Feasibility

was never found with Beam-MMAS and 3 out of 18 instances were solved by

Beam-ACO(uoa)
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Overall, CP-Beam-MMAS is the best performing algorithm for the CS problem

inheriting the feasibility characteristics of CP-MMAS and easily outperforming it

in terms of optimality.

Table 5.8 shows results for CP-MMAS and CP-Beam-MMAS on the problem

instances from (Perron and Shaw, 2004). CP-Beam-MMAS is the CP-Beam-ACO

version using stochastic sampling to obtain estimates for the beam component. The

first column specifies the instance with the first index being the number of cars

to sequence and the second index being an identifier. The next six columns show

the results for CP-MMAS. The second column shows the best result (number of

variables successfully assigned) obtained in terms of feasibility and the third column

are the average results across the 30 runs. uua is the average uua value obtained

for the instance and the next column are the associated standard deviations. The

next column specifies the CP assignments performed during the execution of the

algorithm. iter stands for the average of the total number of iterations conducted

by the algorithm. The next column specifies the number of runs where the algorithm

failed for each instance. The next seven columns are the same results corresponding

to CP-Beam-MMAS.

In the time allowed both algorithms find feasibility or come very close (a sequence

size that is close to that of the number of cars that need to be sequenced) to finding

feasibility on all problem instances. Except for 500-27 and 500-88, CP-MMAS

finds feasibility at least on one of the 30 runs. Additionally, CP-Beam-MMAS fails

on 100-82. In general CP-MMAS is slightly more effective in terms of feasibility.

The next comparison is of the uua values. The values are only considered on the

cases where feasibility was found. For example, feasibility for a single run for 100-82

was found with CP-MMAS and only this value is considered for the uua average

value. The statistically significant results are marked in bold face. Except for

one instance (100-82) where CP-Beam-MMAS does not find feasibility, CP-Beam-

MMAS outperforms CP-MMAS. Hence, if feasibility is found CP-Beam-MMAS

is the preferred algorithm for the optimization version of the problem.

In terms of variable assignments, CP-Beam-MMAS performs significantly more

of these compared to CP-MMAS. This is expected since CP-Beam-MMAS per-

forms many more “cheap”9 assignments when the last few variables need to be

assigned. In fact this was an aim of the algorithm design for CP-Beam-MMAS.

There is no significant difference in iterations except for CP-MMAS usually per-

forming a few more iterations. In the situation where few feasible solutions are

found per iteration, an algorithm will usually complete more iterations, given a

time limit, compared to the situation where feasible solutions are always found.

9In general, when assigning a variable, CP propagation costs are expensive. However, when
relatively few variables are left to label, the propagation costs are relatively small.
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This shows that CP-MMAS may complete fewer close to feasible solutions. With

CP-Beam-MMAS other partial solutions may still be in the beam if solutions are

rendered infeasible causing an iteration to last longer. This effect may be observed

on instance 500-27 where CP-Beam-MMAS on average assigns approximately four

fewer variables and hence completes at least three more iterations.

Given the above results, CP-Beam-MMAS is the best choice. However, we

used stochastic sampling in this implementation and it is worth examining whether

known bounds perform as well or better when implemented with CP-Beam-ACO. In

Table 5.9 we show the results for CP-Beam-ACO with bounds based on the uoa and

uua measures. The costs are computed as follows. The uoa estimate is computed as

the sum of the partial solution’s current uoa cost and the uoa bound. Similarly, the

uua estimate is the sum of the current uua cost and the uua bound. The uoa & uua

estimate is the sum of the uoa and uua estimates. For full details of these bounds

see (Bautista et al., 2008).

Table 5.9: Feasibility results for experiments with bounds for the beam search com-
ponent in CP-Beam-MMAS.

uoa & uua uoa uua

best mean best mean best mean

100 - 22 100 100.0 100 100.0 100 100.0
100 - 35 100 100.0 100 100.0 100 100.0
100 - 64 100 100.0 100 100.0 100 100.0
100 - 77 100 100.0 100 100.0 100 100.0
100 - 82 98 97.8 100 98.3 100 98.1
100 - 94 100 100.0 100 100.0 100 100.0
300 - 8 298 294.3 300 296.5 300 296.7
300 - 14 300 300.0 300 300.0 300 300.0
300 - 53 300 300.0 300 300.0 300 300.0
300 - 56 300 300.0 300 300.0 300 300.0
300 - 62 300 299.9 300 300.0 300 300.0
300 - 78 300 296.9 300 298.4 300 298.4
500 - 14 500 500.0 500 500.0 500 500.0
500 - 27 483 480.2 487 482.7 484 482.6
500 - 65 498 494.3 500 496.8 500 496.8
500 - 74 500 498.4 500 500.0 500 499.9
500 - 79 500 500.0 500 500.0 500 500.0
500 - 88 495 493.0 495 494.3 496 494.3

Table 5.9 focuses on feasibility. CP-Beam-ACO with uoa or uua perform well.

The uoa estimate is expected to be effective since uoa is a cumulative measure of how

many option we are over the allowed option in the current sequence. Overall, the
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uoa estimate is marginally more effective than uua and significantly more effective

than the combination of the uoa and uua estimates. We also point out here that

there were no significant differences in terms of the uua measure.

Given these results, we now compare CP-Beam-MMAS and CP-Beam-MMAS(uoa)

in terms of optimality of uua(). We only consider those instances where feasibil-

ity was found by both algorithms (see Table 5.10). These results show that when

feasibility is found, CP-Beam-MMAS is the best performing algorithm across all

instances. See also Figure 5.9 which shows the % difference of CP-MMAS and

CP-Beam-MMAS(uoa) to CP-Beam-MMAS. Hence for the optimizaiton version

of the problem, CP-Beam-MMAS is the preferred algorithm.
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Figure 5.9: The uua results for CP-MMAS and CP-Beam-MMAS(uoa); For each
algorithm, the % difference to CP-Beam-MMAS is shown averaged across each
problem size.
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Table 5.10: Comparison between CP-Beam-MMAS and CP-Beam-MMAS(uoa)
where feasibility is found.

CP-Beam-MMAS(uoa) CP-Beam-MMAS

uua sd uua sd

100 - 22 274.23 1.71 268.95 1.27
100 - 35 238.19 1.79 231.16 1.72
100 - 64 262.83 1.59 258.35 1.75
100 - 77 187.67 1.17 181.37 1.53
100 - 94 192.63 1.37 183.56 1.46
300 - 8 616.82 7.13 614.42 7.04
300 - 14 838.73 2.73 818.12 3.66
300 - 53 697.77 1.56 686.07 1.92
300 - 56 550.62 2.69 534.74 3.27
300 - 62 858.84 4.9 838.84 5.24
300 - 78 626.24 8.58 610.70 6.34
500 - 14 708.6 2.77 687.00 4.10
500 - 65 797.85 0.16 783.42 0.00
500 - 74 803.93 5.19 776.93 6.87
500 - 79 1522.08 4.18 1474.83 5.25

Investigating CP Influence

We now examine the contribution of the CP component. To do so we eliminate

any CP from the hybrids, obtaining MMAS and Beam-MMAS. Without the CP

support, neither of these algorithms finds feasibility on any instance on any run (see

Table 5.11). Note that Beam-MMAS uses stochastic sampling as the estimate and

as we had seen in Table 5.8, this estimate provides no feasibility advantage over

plain CP-MMAS. Therefore, we cannot expect any advantage over CP-ACO using

this estimate with Beam-MMAS.

Beam search using the uoa bound guides the algorithm towards feasibility as

seen in (Bautista et al., 2008). Thus Beam-ACO(uoa) may be better placed to find

feasibility and we examine this algorithm here. We retain the previous parameter

settings of θ = 10 and µ = 3. Table 5.12 shows that CP-Beam-MMAS(uoa) is

more effective when considering feasibility.10 There are three instances where Beam-

ACO(uoa) finds feasibility although infrequently for two instances. Comparing these

algorithms clearly shows that the CP component provides a big advantage over only

using the bound.

10Note that Beam-ACO(uoa) does not use the DSU static heuristic.
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Table 5.11: MMAS and Beam-MMAS results for selected instances from Perron
& Shaw (2004). Statistically significant differences (p = 0.05) in uoa and uua are
marked in bold face.

MMAS Beam-MMAS

uoa sd uua sd uoa sd uua sd

100 - 22 71.60 0.59 357.45 2.73 66.3 0.90 333.64 2.59
100 - 35 59.82 0.74 316.56 2.72 56.39 1.06 292.87 2.69
100 - 64 84.00 0.45 343.78 5.65 80.02 1.23 318.55 2.40
100 - 77 82.60 0.41 278.66 2.39 78.36 0.84 253.61 1.75
100 - 82 105.38 0.61 346.17 3.08 101.60 1.30 324.38 2.70
100 - 94 53.02 0.69 271.72 3.89 49.51 1.00 244.52 2.69
300 - 8 200.63 1.88 839.32 7.35 178.08 2.41 763.90 6.74
300 - 14 237.81 1.60 1092.65 9.35 212.90 2.59 1012.11 5.47
300 - 53 184.42 1.88 913.31 7.86 165.45 2.45 844.57 6.35
300 - 56 257.62 1.19 826.49 7.14 232.49 2.90 755.00 5.48
300 - 62 224.71 2.37 1104.79 6.90 196.79 2.16 1015.31 6.70
300 - 78 244.55 1.98 871.23 7.22 214.78 2.44 790.57 5.54
500 - 14 411.56 3.36 1164.63 9.69 353.84 3.25 1028.22 7.25
500 - 27 621.11 2.91 2246.40 13.01 572.28 3.95 2096.81 7.97
500 - 65 498.01 1.91 1294.92 9.18 452.52 3.91 1181.95 6.85
500 - 74 428.69 2.38 1264.26 10.28 386.19 3.40 1147.23 8.97
500 - 79 530.75 3.41 2070.34 11.31 473.68 4.11 1930.65 9.43
500 - 88 435.94 2.13 1681.00 10.06 391.54 3.58 1554.87 8.76
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While Beam-ACO(uoa) is able to identify feasibility on three problems, its perfor-

mance compared to CP-Beam-MMAS(uoa) is poor across all the instances. There-

fore, we conclude that the uoa bound is only effective if large beam widths may be

used and this is infeasible for use with CP given the memory requirements.11 Com-

paring with CP-Beam-MMAS in Table 5.8, we see that CP-Beam-MMAS is more

effective in terms of feasibility. Considering uua for the three instances where feasi-

bility is found, Beam-ACO(uoa) is very close to CP-Beam-MMAS and is slightly

more effective on two instances.

Table 5.12: Comparison between Beam-ACO(uoa) and CP-Beam-MMAS(uoa).

Beam-ACO(uoa) CP-Beam-MMAS(uoa)

uua sd fail uua sd fail

100 - 22 0 30 274.23 1.71 0
100 - 35 0 30 238.19 1.79 0
100 - 64 0 30 262.83 1.59 0
100 - 77 181.21 1.78 0 187.67 1.17 0
100 - 82 0 30 253.75 1.54 25
100 - 94 200.18 2.32 27 192.63 1.37 0
300 - 8 0 30 616.82 7.13 27
300 - 14 0 30 838.73 2.73 0
300 - 53 0 30 697.77 1.56 0
300 - 56 0 30 550.62 2.69 0
300 - 62 0 30 858.84 4.9 0
300 - 78 0 30 626.24 8.58 22
500 - 14 676.46 4.94 22 708.6 2.77 0
500 - 27 0 30 30
500 - 65 0 30 797.85 0.16 28
500 - 74 0 30 803.93 5.19 0
500 - 79 0 30 1522.08 4.18 0
500 - 88 0 30 30

Comparison with Beam Search

The final experiment conducted here is to compare Beam-ACO(uoa) with (Bautista

et al., 2008). We ran our algorithm (disregarding the DSU heuristic) on the same

instances. Table 5.13 shows these results for runs of duration 10 minutes. The

parameters of our algorithm were set as θ = 50 and µ = 20. TheMMAS parameters

were set as above. It is not clear what value for µ was used by (Bautista et al., 2008)

and here we show that with a reasonable value we achieve results close to that of

11We had available 4GB memory and attempted θ = 50. However, we ran out of memory on all
instances.
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this study. Furthermore, our algorithm including an iterative learning component

requires a a smaller value of µ in order to allow for a larger number of pheromone

updates. These results shows that overall the original beam search algorithm is

marginally superior in terms of feasibility. However, it only solves three instances in

all, which is a small proportion considering that the p200, p300 and p400 datasets

consist of 10 instances each and none of them are solved. The largest difference is

seen for p400. Here, the difference is about 13 units but when considering that we are

sequencing 400 cars, this is a relatively small. Thus, if we consider the constraints

as hard, pure beam search is really not an option.

Table 5.13: Beam-ACO(uoa) repeated for instances from Bautista (2008). The DSU
heuristic is not used in these implementations.

Beam (Bautista et al., 2008) Beam-ACO(uoa)

uoa uua uoa sd uua sd

10 - 93 3 5.3 0.7 34.4 3.0
16 - 81 1 1.9 0.5 55.5 2.8
19 - 71 3 2.8 0.4 44.8 3.7
21 - 90 4 3.0 0.6 71.3 1.5
26 - 82 0 3.2 0.7 67.0 2.1
36 - 92 2 4.0 1.0 55.7 3.2
41 - 66 0 1.9 0.7 111.6 0.8
4 - 72 0 2.1 0.8 70.4 2.9
6 - 76 6 5.6 0.5 115.3 0.5
p200 10.1 138.2 12.4 1.1 134.5 2.8
p300 16.0 176.0 22.1 1.7 169.2 3.7
p400 11.7 325.1 24.6 2.2 283.9 4.1

CP Propagation Costs

We further assess the cost of stochastic sampling versus CP solver costs. 5 instances

were chosen from each problem size, 100-77, 200-3, 300-8, 400-8 and 500-14.12 For

each instance, 10 iterations are allowed where the time required to for a CP call

(i.e., calling the solver and obtaining its state) and the time required for stochastic

sampling are measured independently. The average results across the ten runs are

reported in Figure 5.10. This figure shows that in general CP calls are relatively

quick and for 200 cars or less the CP calls are more efficient than stochastic sampling.

However, for 300 cars and above, the CP solver costs increase dramatically and

stochastic sampling becomes increasingly cheaper. The cost for CP calls increase

12The instances with 200 and 400 cars were obtained from p200 and p400 instances used
by (Bautista et al., 2008)
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exponentially with the problem size whereas the stochastic sampling costs increase

approximately quadratically as expected.
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Figure 5.10: This figure shows the time needed (seconds) for CP (CP solver calls)
versus SS (stochastic sampling). An Θ(n2) trend-line is also shown. A randomly
selected instance from each machine size was run for 10 iterations and the average
results across the 10 runs are reported here. The CP calls clearly require a greater
amount of time compared to stochastic sampling and this difference generally in-
creases with the number of cars. Note that the results here do not require that
feasible solutions are found.

5.3.5 Discussion

The results are summarised as follows. MMAS and Beam-MMAS struggle and

never find feasibility. Both CP-MMAS and CP-Beam-MMAS are able to effec-

tively find feasibility for the optimization version of the car sequencing problem (see

Figure 5.11). CP-MMAS is marginally more effective in terms of feasibility. The

CP algorithms easily outperform Beam-MMAS with a large beam width despite

the fact that the latter uses better bounds. Unfortunately, this better bound (uoa)

becomes unusable with CP due to the large beam width requirements.
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Figure 5.11: Cumulative failure results for MMAS, Beam-MMAS, Beam-
ACO(uoa), CP-MMAS and CP-Beam-MMAS; For each algorithm, each block
corresponds to one problem instance where the shading/colour indicates the prob-
lem instance and the height of each block indicates the number of failures.

In terms of optimization performance, CP-Beam-MMAS is the best perform-

ing algorithm. This is consistent across the 15 out of 18 problem instances where

feasibility is found. The non-cp algorithms struggle with feasibility and hence a

comparison of the objective values is not meaningful.

The results seen here are similar to those in (Thiruvady et al., 2009) where CP-

Beam-MMAS was applied to a single machine job scheduling problem. This is

also an optimization problem with non-trivial hard constraints where a complex CP

model was devised. Here, with the car sequencing, we similarly see a performance

advantage of CP-Beam-MMAS over CP-MMAS. The feasibility differences are

also similar with CP-MMAS being slightly more effective. Also like (Thiruvady
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et al., 2009), we see that problem specific lower bounds combined with the learning

component and CP are not as effective as the stochastic sampling mechanism. This

alternative is a simple and generic mechanism to generate estimates and proves to

be useful here.

5.3.6 Conclusion

In this study, we have suggested CP-Beam-MMAS for solving the optimization

version of the car sequencing problem. Through parallel solution construction, CP-

Beam-MMAS is able to effectively optimize the utilization of options across a

sequence. This is clearly observable across a number of hard problem instances

where CP-Beam-MMAS consistently outperforms CP-MMAS. Furthermore, the

feasibility advantages of CP-MMAS are inherited by CP-Beam-MMAS. Similar

results were observed during a comparison of the same methods in (Thiruvady et al.,

2009).

This result shows that where CP-MMAS may be applied, CP-Beam-MMAS

can also be applied with performance gains. This is especially true for complex CP

models where constraint propagation is expensive. Furthermore, CP-Beam-MMAS

also provides an advantage for those problems where CP is effective but propagation

costs are relatively cheap as we have seen with the MMJS problem.

Stochastic sampling proves to be a useful way of obtaining estimates. We ex-

plored different lower bounds specific to the car sequencing optimization problem

which are not useful when combined with CP. The uoa estimate is very effective when

large beam widths are usable. However, such a scheme is currently not tractable

with respect to memory when combined with CP, due to the large beam width

requirements, as shown here.



Chapter 6

Beam Search Estimates

The performance of CP-Beam-ACO is dependent on several factors as we have shown

with the previous case studies. One of these is the beam search component which

is of vital importance. In particular, the solution construction is guided by the

estimates and obtaining these effectively is vital to the progress of the search. In

the case studies we used stochastic sampling and we further examine this here.

Furthermore, problem specific bounds can also be use to obtain these estimates and

we examine a subset of these for each case study.

Regarding stochastic sampling, we have used a relatively straightforward scheme

of generating samples based on a relaxed version of the problem and biasing the

solution construction with pheromones. This was shown to be very effective and we

aim to get insight into this scheme by further analysis of stochastic sampling on the

SMJS problem.

A second aim of this chapter is to analyse known bounds for each of the case

studies. Typically, bounds focus on relaxed versions of the problem so that solutions

are biased towards optimal regions of the search space. We examine such bounds

for all three case studies. Bounds for the CS problem have already been discussed

in the Section 5.3 of the previous chapter and are summarized here.

6.1 Analysing Stochastic Sampling

One way of determining the effectiveness of stochastic sampling is to examine its

usefulness at various levels of the search tree. Consider that we generally use a

small number of samples since we need the estimate relatively quickly and cheaply.

Intuitively, for instances with a large number of variables, a few samples at the

higher levels of the tree are unlikely to provide much guidance since the search

space is extremely large. Thus, we hypothesise that while this procedure would

be effective at lower levels of the search tree, it is not expected to provide useful

estimates higher up in the tree if the number of samples are small. This implies

119
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that for the first few jobs stochastic sampling does not make a significant difference

especially for the large instances.

For the first i variables, where stochastic sampling is not used, we compute a

lower bound estimate based on the average solution cost of the remaining variables

to bind:

p+
µ× (n− i)

n
× ℵ(1.0, 2.0) (6.1)

where p is the partial cost so far, µ is the mean setup time estimate, n is the

number of variables and ℵ(1.0, 2.0) is a normally distributed random variable with

mean 1.0 and variance 2.0. Thus, we add a quantity to the current partial cost

that represents an estimate of the cost of the remaining jobs to be sequenced. The

normally distributed random variable acts as a smearing factor. This essentially

provides an unbiased estimate over the remaining jobs across all partial solutions.

The results for 30 runs per instance and 1000 iterations are shown in Table 6.1.

The parameter settings are the same as those used for the SMJS experiments, see

Appendix A. The table shows the results for the first x ÷ i using the estimate in

Equation 6.1 while the remaining variables, x − (x ÷ i), use stochastic sampling.

The results here show that increased stochastic sampling always leads to improved

feasibility and solution quality. This is despite the small number samples used and

we even see an improvement when the first few variables do not use stochastic

sampling (see Table 6.2).

These results show that there is consistent improvement with more frequent

stochastic sampling. However, as expected, the results with the last three quarters

of the variables labeled with stochastic sampling are very close to total stochastic

sampling (i.e., all variables). Thus stochastic sampling may be more useful after

some proportion of the jobs have been scheduled see the SS column in Table 6.1.

The samples obtained by stochastic sampling are constructed using the phero-

mone trails. However, if the learning component is eliminated from sampling and the

solution components are selected with equal probability, the solution quality can be

expected to deteriorate across all runs. These results are shown in Table 6.2 where

30 runs per instance were conducted for 1000 iterations with the same parameters

as described in Appendix A. These results show uniform selection performs very

well on its own. However, using pheromones still provides an advantage and hence

making use of the learning component leads to more effective estimates.
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6.2 Single Machine Job Scheduling

6.2.1 Linear Programming Approximation to the Hungar-

ian Algorithm

The assignment problem can be formulated as a linear program as shown in Chap-

ter 1. The Hungarian algorithm (Kuhn, 2010) can be used to solve this linear

program thus providing a lower bound for a partial solution.1 This is done by con-

sidering a relaxed version of SMJS where the setup times of the remaining jobs are

considered.

Discussed in Chapter 1 was the assignment problem which is a minimum bipartite

matching algorithm (Cormen et al., 2001). It can be formulated similar to the

formulation shown in that chapter. We restate it here with minor differences in

notation. Given the Graph G(V,E)

min
∑
i,j∈V

cij × xij (6.2)

subject to ∑
j∈V

xij = 1 i ∈ V (6.3)

∑
i∈V

xij = 1 j ∈ V (6.4)

xij ≥ 0 i, j ∈ V (6.5)

where xij = 1 if the edge between jobs i and j are selected in the final solution. The

constraints ensure that there is only one edge selected from any job to all the other

jobs. cij are the setup times between jobs i and j. It can be seen here that we may

get cycles which are independent of other cycles in the resulting assignment. Thus

we potentially allow selecting setup times between jobs that may not necessarily

be consecutive jobs in the final sequence. However, this estimate clearly provides a

lower bound to the more constrained version of the problem, SMJS.

6.2.2 Minimum Setup Time

This estimate is obtained by adding the partial cost of the partial solution to the

minimum remaining setup times. The latter is computed as follows. For every

solution, a complete solution is constructed using the minimum setup time to the

next job (j such that stij < stik∀k where i was the last completed job). The lower

1Note that the assignment problem is a minimum weighted bipartite matching problem and
therefore, flow algorithms cannot be applied here.
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bound is:

p+ stπij +
n−1∑
k=i+1

minl(stkl) (6.6)

where minl(·) is the job such that the setup time from job k to l is minimum.

6.2.3 Comparison

The results of the experiments with the above estimates are presented in Table 6.2.

We see here that the LP estimate (LPE) is a good lower bound with respect to

makespan but is still outperformed by stochastic sampling. The minimum setup

estimate (MSE) performs worse across all instances except the smallest ones that

are not tightly constrained (W8.3,RBG10.a). With respect to feasibility, LPE and

MSE struggle with the tightly constrained instances. There is no real winner when

comparing these algorithms. Regarding solution quality, the same can be said, i.e.,

both implementations perform to a similar level. Furthermore, both implementa-

tions are not competitive with the stochastic sampling based implementations with

respect to feasibility or solution quality.

6.3 Multiple Machine Job Scheduling

Here we also examine two bounds for the MMJS problem. The first is a quickly

obtainable bound based on the current solution weighted-tardiness from which we

greedily select the best solutions (See Table 6.3). As these results show the bound

does not drive the solutions towards feasibility or improved solution quality. This is

expected since we are only considering past experience and not the potential of the

remaining components of the solution.

A second more interesting bound - infinite machine infinite resource (IMIR) -

is based on a relaxed version of the problem. The first constraint that is relaxed

is that jobs that belong to a machine must be placed on the machine. Hence,

this bound effectively allows infinite machines. However, precedences between jobs

are kept which requires that jobs with precedences must be placed on the same

machine. The resource constraint is also relaxed. This is similar to the scheme used

by (Stinson, Davis and Khumawala, 1978).

Like stochastic sampling, this bound provides two estimates, the number of vi-

olations of the hard due times and the weighted tardiness of the relaxed problem.

However, as the results show, the estimate of the violations do not lead the partial

solutions towards feasible regions. This result is not surprising since the start times

of jobs in the relaxed version of the problem are potentially a lot earlier than their
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Table 6.3: Experiments with bounds for the beam search component in CP-Beam-
ACS; Tardiness: based on the current partial solution weighted-tardiness; IMIR:
infinite machine infinite resource. Statistically significant differences (p = 0.05) are
shown in boldface.

Tardiness IMIR

best mean sd fail iter. best mean sd fail iter.

3 - 23 158.08 162.97 4.20 0.00 4.27E3 158.08 159.99 1.08 0.00 5.83E3
3 - 53 72.53 72.90 1.81 0.00 5.75E3 72.53 72.62 0.30 0.00 7.39E3
3 - 5 519.06 544.24 27.32 0.00 6.86E3 522.52 550.17 14.47 0.00 5.13E3
4 - 28 24.76 29.38 2.13 0.00 6.99E3 24.10 28.48 2.53 0.00 6.35E3
4 - 42 166.50 201.73 23.11 0.00 5.28E3 196.09 287.88 61.91 0.70 9.09E3
4 - 73 98.35 134.61 38.82 0.63 5.02E3 148.32 174.56 22.39 0.80 3.57E3
5 - 21 260.02 340.28 48.67 0.00 2.88E3 263.76 342.96 44.30 0.23 3.34E3
5 - 62 553.38 638.20 56.86 0.00 3.03E3 527.12 661.39 81.86 0.87 3.23E3
5 - 7 1.00 1.00
6 - 10 1.00 1455.33 1640.53 128.25 0.50 1.17E3
6 - 28 445.36 631.83 104.25 0.10 2.87E3 369.08 414.23 28.65 0.00 1.76E3
6 - 58 391.14 478.32 48.95 0.43 2.75E3 430.04 490.12 39.21 0.23 2.65E3
7 - 15 1.00 1.00
7 - 23 932.67 1076.03 93.45 0.43 2.20E3 780.11 959.90 86.43 0.13 1.65E3
7 - 47 1.00 1.00
8 - 3 1.00 1.00
8 - 53 638.83 715.18 48.18 0.00 1.54E3 574.90 644.75 33.58 0.00 1.33E3
8 - 77 1946.27 2198.73 186.70 0.00 1.18E3 1.00
9 - 20 1519.47 1767.55 147.59 0.00 9.25E2 1348.10 1541.57 71.98 0.00 7.03E2
9 - 22 1573.84 1724.21 94.85 0.00 9.71E2 1473.85 1590.51 64.97 0.00 8.08E2
9 - 47 2065.75 2504.39 265.03 0.00 4.95E2 1793.36 2067.01 97.34 0.00 5.73E2
10 - 13 1.00 1.00
10 - 77 1.00 1.00
10 - 7 1.00 1.00
11 - 21 1956.16 2578.42 331.02 0.00 6.78E2 1780.09 1992.25 121.65 0.00 6.18E2
11 - 56 3306.15 3756.40 326.50 0.70 6.27E2 3053.35 3477.53 286.95 0.57 5.07E2
11 - 63 1.00 1.00
12 - 14 1.00 1.00
12 - 36 1.00 1.00
12 - 80 1.00 1.00

actual start times thereby not violating their hard due time. Therefore, this esti-

mate can be misleading. Considering tardiness, the solution qualities are improved

compared to the previous weighted-tardiness estimate but are not comparable to

stochastic sampling. Again, here the relaxation of the constraints potentially re-

sult in a misleading estimate of the weighted-tardiness leading the solutions into

non-optimal areas of the search space.

6.4 Car Sequencing

In Section 5.3 of Chapter 5 we analysed CP-Beam-MMAS with bounds based on

the uoa and uua measures. We briefly review those results here (refer to the tables

of results in Section 5.3.3). In terms of feasibility, uoa, uua and stochastic sampling
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perform competitively. The uoa estimate is expected to be effective since uoa is

a cumulative measure of how many option we are over the allowed option in the

current sequence. Surprisingly, the uua estimate provides results close to that of

uoa. The combination of the uoa and uua estimates performs poorly compared ot

the other estimates.

In terms of optimizing uua, stochastic sampling provides the best solutions where

feasible solutions are found. The uua bound seems to provide no advantage with

the uoa bound performing better in several cases.

6.5 Discussion

The estimate for the beam component can be determined by typically relaxing

some constraints and obtaining bounds aimed at leading the search towards fea-

sibility/optimality. This allows us to compute principled bounds for the partial

solutions and we have examined the following for each problem:

• SMJS: minimum setup time and LP relaxation of the Hungarian algorithm

• MMJS: current tardiness and infinite machine infinite resource

• CS: upper-over assignment and upper-under assignment and their combination

In each case, the respective lower bounds failed to provide the best results. This

is observable with respect to both feasibility and optimality. We conjecture here

that the reasons for this are twofold. Firstly, consider a number of partial solu-

tions occupying the beam, each of which has an associated lower bound computed.

All the implementations of CP-Beam-ACO that we have seen select solutions in a

greedy fashion from the partial solutions available. Thus the lower bounds could be

misleading and cause better solutions to be discarded from the beam. We have con-

sidered introducing some variation into the selection (i.e., probabilistic as opposed

to greedy selection) for each problem, however, this did not improve the results.

We still believe that further investigation in this direction is likely to lead to useful

results.

When considering feasibility, the CP component generally overwhelms any feasi-

bility estimate. Thus, feasibility estimates are not useful in the context of CP-Beam-

ACS. However, we see in the CS problem that such an estimate can be effective with

Beam-ACO alone. Even considering this improvement, the results are not compara-

ble to the CP implementations. Thus, as far as feasibility goes CP clearly provides

the best results.
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6.5.1 Stochastic Sampling

Stochastic sampling has been used in a simple form in this thesis. The basic idea

is to generate a number of samples using the pheromones. Typically, some of the

constraints in the original problem are relaxed and a solution with soft constraints

is built in a straightforward manner. The advantages of this method are that it is

generic, simple and biased by learning (sampling pheromones). It is generic as it is

applicable to a large number of problem classes. We have shown here that it can

quite easily be defined for all the problems we have examined. It is simple in that a

simplified version of the original problem is considered and a solution can be built

in the usual constructive manner of ACO. Finally, it is biased by learning here since

we can make sure the samples generated use the pheromones to construct solutions.

The samples usually provide two estimates for the problems considered here. The

first is an estimate on feasibility (e.g., in the SMJS problem: for a given sequence,

the number of jobs that violate their due times) and the second is the solution

cost (e.g., in the SMJS problem: makespan of sequence). We have seen that the

feasibility estimate is useful for SMJS (when CP is not used, i.e., Beam-ACO is

more effective than ACO) and MMJS problems. With the MMJS problem, the CP

component is relatively weak, and here we see a big gain from stochastic sampling.

However, it should be noted that this gain is mainly useful when combined with

CP. In general, as we have seen with the lower bounds, the feasibility advantage

provided by stochastic sampling is not significant for complex CP models (SMJS

and CS problems).

The optimality estimate proves to be useful for the SMJS and CS problems. This

is not the case for the MMJS problem. The former two problems have relatively

complex CP models and the MMJS problem has a simpler CP model. Despite this,

the more likely reason that this estimate was unsuccessful with MMJS is due to the

following. Several permutations may map to the same point2 on the fitness landscape

and a small change in the permutation could result in a very different position on the

landscape. Therefore, the samples may more often than not, mislead the solution

construction.

We have also analysed the contribution of stochastic sampling at various levels

of the search tree. This was done with the SMJS problem. The results showed that

the samples are largely useful after a quarter of the variables have been labeled.

From this point onwards there was always a significant reduction in performance,

i.e., sampling after 1/4 variables >> 1/2 variables >> 3/4 variables. This was

despite the relatively small number of samples compared to solution space (e.g. 10

2Note that this is not the same objective function value but the same point.
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samples for a 30 variable problem). Overall, stochastic sampling has been effective,

more effective than the lower bounds, but why it works so well is still surprising.

6.6 Conclusion

In this chapter we analysed the estimates of the beam search component of the

algorithms developed in this thesis. We revisited the SMJS problem to determine

the effectiveness of stochastic sampling. We find that relatively few samples pro-

vide a positive effect after a quarter of the variables have been labeled consistent

with (López-Ibáñez et al., 2009). For each case study we examined problem spe-

cific bounds. These bounds showed varying results, however, the final outcome is

that stochastic sampling was more effective than any particular bound across all

problems.

Stochastic sampling provides a way to obtain estimate relatively cheaply in a

problem independent fashion. Compared to other estimates/bounds, this estimate

provides the additional estimate of the feasibility of a path. This is particularly

useful in the context of the problems studies in this thesis where problems are

tightly constrained. Having gained some insight and observed its effectiveness, the

success of this technique still requires further investigation. This characteristic can

be viewed as being closely linked with the use of metaheuristics, where they are

particularly useful if there is not principled approach to solving the problem.

The problem specific bounds were also analysed but mostly shown to be infe-

rior particularity in terms of feasibility. While the CP component leads solutions

towards feasible regions the greedy selection based on a bound is ineffective. There

is certainly room to understand this more thoroughly but replacing greedy selection

by introducing variability dependent the partial solution quality. Furthermore, the

selection based on the estimate could be swapped with the pheromone selection.

This introduces variability at both stages of candidate selection potentially leading

to improved solution costs.



Chapter 7

Conclusions and Future Work

This thesis shows that real-world tightly constrained COPs can be tackled by effi-

ciently hybridizing CP with ACO. We see here that the proposed algorithm, CP-

Beam-ACO, is a viable implementation of CP-ACO in practical settings. CP-ACO

was shown to be effective by Meyer & Ernst (2004) on the SMJS problem. However,

this algorithm had run-time problems due to the overhead of constraint propagation.

Thus, obtaining high quality solutions for large problem instances in a reasonable

time-frame was not possible. This motivated the need to improve CP-ACO in prac-

tical settings and we have achieved this by incorporating the solution construction

mechanism of Beam search in ACO. This leads to significant performance gains with

the resulting hybrid being more efficient and effective.

The main issue with CP-ACO was that the ACO component of the algorithm

frequently reconstructs (parts of) a solution requiring repetition of the same propa-

gation steps. In CP-Beam-ACO we overcome this problem by replacing the standard

ACO component of CP-ACO with Beam-ACO (Blum, 2005). The underlying idea

behind this hybrid was to build unique solutions and we achieved this effectively via

Beam-ACO. Like ACOs solution construction, Beam search builds solutions in par-

allel. However, the solutions are partially dependent on each other in two aspects:

(1) always requiring that a partial solution be extended by a uniquely new compo-

nent and (2) partial solutions may be discarded in favour more promising partial

solutions in another part of the search tree. Hence, within an iteration, the same

propagation is never repeated and the algorithm biases the search towards more op-

timal regions. By using an efficient CP solver (Gecode) we showed CP-Beam-ACO

provides significant improvements over CP-ACO.

In order to demonstrate the effectiveness of CP-Beam-ACO, we examined its

performance on three tightly constrained COPs. These were the SMJS, MMJS

and CS problems which are examples of typically occurring problems in real-world

settings. Often the unconstrained version of the problem is itself NP-hard making

it complex to solve. When constraints are introduced, these problems can become

129
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significantly harder to solve. Through CP-ACO, feasible solutions to the problems

are obtained but with the overhead of large run-time requirements. By parallelizing

the solution construction we showed that CP-Beam-ACO outperforms CP-ACO

retaining its advantages. The metaheuristics, ACO and Beam-ACO, struggle to find

feasible solutions and perform significantly worse than either CP-based algorithm.

Thus, where strong CP models can be defined in conjunction with effective learning

models we see a clear advantage of using CP-Beam-ACO.

In terms of solution quality we see that CP-Beam-ACO significantly outperforms

CP-ACO for problems where complex CP models have been defined. We see for the

SMJS and CS problems that CP-Beam-ACO is almost always superior irrespective of

problem size. This can be attributed to two factors. The first is that CP-Beam-ACO

spends less time in CP propagation or the feasibility component of the algorithm.

This saved time can be spent to locate high quality solutions where feasibility is

found. This is observed with the larger number of nodes labelled as seen with CS.

Secondly, the beam structure is more suited to intensification by biasing solutions

towards optimal regions via the estimates. This is clearly seen in the case of SMJS

where Beam-ACO is also superior to ACO. This comparison is not so straightforward

with CS since both ACO and Beam-ACO do not find a single feasible solution.

CP-Beam-ACO inherits the feasibility advantage of CP-ACO. This can be seen

with all three problems we have examined. Where complex CP models have been

implemented we see that CP-ACO has a slight feasibility advantage. This is possibly

attributable to a combination of two factors. The first is that CP-ACO spends more

time in propagation as it does not require the additional overhead of CP-Beam-

ACO such as the estimates. More importantly, the beam search estimate biases

the solution construction towards optimal regions thereby reducing variation in the

current solutions being searched. If there are relatively few feasible regions, these

may not be explored as the estimate may eliminate them early on in the search.

Having pointed this out, the feasibility advantage of CP-ACO over CP-Beam-ACO

across both problems is less than 1%.

CP-Beam-ACO has a significant feasibility advantage for the MMJS problem.

We have devised a relatively simple CP model for this problem and the time spent

in propagation is very little even with increasing problem size. Thus the additional

time needed by CP-Beam-ACO to compute the estimate is much larger than CP

propagation, but crucially, the estimates guides the solutions to feasible regions. We

see a 22% improvement across the runs conducted with the MMJS problem instances

with CP-Beam-ACO over CP-ACO.

A comparison of feasibility of the CP-based and non-CP algorithms shows that

the former class of methods struggle to find feasibility where complex CP models

can be defined for a problem. This is clear with the CS problem but is also seen
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with the SMJS problem for large instances. This is not surprising given that the CP

component is specially designed to identify feasibility and more time spent in this

component should lead to feasibility. ACS for the MMJS problem performs nearly

as well as CP-ACS. Thus, the relatively simple CP model leads to small gains.

However, in conjunction with stochastic sampling and the beam structure, the CP

model proves very effective leading to significantly improved feasibility overall.

The estimates driving the beam component of CP-Beam-ACS have been analysed

for all three problems. We suggest stochastic sampling (López-Ibáñez and Blum,

2008) as a generic method to obtain estimate cheaply. This technique is shown to

be effective on all the problems tackled. It serves as an alternative to principled

bounds which may not be obtained cheaply. We see that in the context of solution

quality, however, a feasibility advantage may also be obtained. Overall, in our case

studies stochastic sampling is more effective than problem specific bounds.

For each study considered we examined known bounds from the literature to

determine if they would provide an advantage over CP-ACO. However, this was not

the case for any of the bounds across all the studies. The basic problem identified

here is that, due to the greedy selection based on the estimates, promising feasible

solutions are often discarded to favour higher quality solutions. Thus, at higher

levels of the search tree where infeasibility cannot be determined, future infeasible

solutions which are locally promising may be selected. A potential solution to this is

to introduce variability in the selection. Furthermore, estimates based on feasibility

in conjunction with the bounds may also be useful. These two suggestions are left

to be addressed in the future.

7.1 Limitations of CP-Beam-ACO

The main component where CP-Beam-ACO differs from CP-ACO is with Beam

search. In this context, cheaply computable estimates are crucial for the success of

CP-Beam-ACO. We have shown through three case studies that stochastic sampling

is a simple way of obtaining quick estimates by relaxing some constraints. However,

we also see that problem specific bounds are not as useful. While one explanation

could be due to the lack of variation in the selection based on the estimates, the

main problem seen is the lack of feasible solutions. Thus, through the estimates,

the beam structure reduces the number of feasible regions favouring optimal ones

thereby undoing the work of CP and this aspect is worth examining further.

We have shown that CP-Beam-ACO provides a significant advantage where CP-

ACO is usually an effective algorithm. One set of limitations of CP-Beam-ACO can

therefore be directly mapped to issues that CP-ACO might have on a particular
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problem. We now discuss two different problems where CP-ACO fails and thus

CP-Beam-ACO is ineffective.

The traveling tournament problem (see Appendix E) is a good example of where

a reasonable pheromone model is hard to determine. The problem is the double

round robin tournament where we must determine a schedule for n teams with

2×(n−1) rounds. Every team must play every other team, home and away, subject

to home and away restrictions.

This problem structure requires a learning scheme to take into account dependen-

cies between home and away locations of a team at the previous and current rounds.

It was shown by (Crauwels and Oudheusden, 2003) that a simplistic scheme can de-

rived from an O(n2) pheromone matrix where the current team being selected is

dependent on the previous team is insufficient. We further tested more complex

pheromone learning matrices without successful results (see Appendix E).

The basic problem here is that there are far too many parameters to learn with

increasing problem size. Even though CP approaches for this problem have shown

to be effective in combination with other methods (Benoist, Laburthe and Rottem-

bourg, 2001; Easton, Nemhauser and Trick, 2003), an ineffective ACO component

renders CP-ACO ineffective leading to poor performance by CP-Beam-ACO.

The photo album layout problem was discussed in Section 2.2 of Chapter 2.

Briefly, the problem consists of placing a number of photos on a page such that the

relative photo areas are specified to be as close to the desired photo areas as possible.

The solution to the problem is specified via a number of constraints between photos,

i.e., how any two photos should be placed relative to each other. Beam search was

shown to be effective for this problem and we further showed that we could add a

learning component resulting in Beam-ACO which is also effective.

However, despite the constraints involved in the problem, the CP model proves

ineffective here. The reason for this is that photos are incrementally added to

the layout and their sizes change. A larger number means that the photos are

smaller on the page even though their relative sizes are maintained. Therefore, the

domains associated with the variables change when photos are added to the layout

and previously feasible solutions may not be feasible any more. Such a scheme does

not allow the CP model to be useful, hence, CP-ACO is ineffective for this problem.

7.2 Further Improvements

There is certainly room for improvement regarding CP-Beam-ACO. We have seen

that by parallelizing the solution construction of CP-ACO we have significant im-

provements by avoiding re-propagation. However, given the iterative nature of ACO,
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the same problem persists across iterations. Therefore, by saving solver states from

iteration to iteration, we can expect further improvements to CP-Beam-ACO.

One aspect of the parallel solution construction that leads to an inefficiency is

that solver states for each solution in the beam must be maintained. The memory

requirements for the combination of solutions is extremely large and could exponen-

tially increase with problem size. This limits how large a beam width we may use.

As we see with the CS problem, this limitation potentially limits designing more

effective solutions. Thus, efficiently managing memory is worth examining.

An extension of the work done here would be to design a way to systematically

assess where CP-Beam-ACO is likely to be successful. For different problem types,

if a mechanism can be designed to automatically suggest if CP-ACO and CP-Beam-

ACO are likely to be successful and further quantify this success, then such a system

will be very useful to practitioners designing algorithms for similar types of problems.

CP-ACO itself can be much improved by considering a parallel framework. This

is particularly interesting given the availability of resources (e.g., clusters). Consider

a master-slave framework. Here, the ACO algorithm would be the master which

could construct each solution independently on separate machines (slaves). While

the performance of this algorithm is dependent on “slowest slave,” the gain in time

improvements are likely to be significant.

This leads to a parallel version of CP-Beam-ACO. Since this algorithm paral-

lelizes CP-ACOs solution construction, extending it to a parallel setting appears

promising. There are further aspects to consider compared to CP-ACO. Firstly,

the solutions are not independent any more. Thus communication between the so-

lutions are crucial. In particular, to make the parallel version efficient, the solver

states must by located on shared memory so that solutions may share solver states.

While this can be done effectively, the limit on the beam widths are still a potential

problem. Considering all aspects, it is certainly worth examining parallel version of

CP-ACO and CP-Beam-ACO. The parallel component could permit applying the

algorithm to much larger problems with many more variables.

7.3 Summary

We see from the studies in this thesis that CP-Beam-ACO is an effective algorithm

for COPs with non-trivial hard constraints. Problems with these characteristics for

which ACO and CP models can be effectively defined can be solved by CP-ACO.

From the studies conducted here, we see that where CP-ACO may be applied CP-

Beam-ACO may also be applied with gains by eliminating the inefficiency of ACOs

repeated solution construction. This leads to an efficient implementation. Thus,
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to solve this class of problems in practical settings, CP-Beam-ACO is the ideal

algorithm.

We have already seen significant improvements to CP-ACO. Furthermore, we

have suggested ways in which CP-Beam-ACO might be improved. The possibilities

are mainly in two directions. The first is to consider repeated solutions across iter-

ations and keeping track of repeating solver states. This will lead to improvements

by further reducing repeated propagation. The second is to extend CP-Beam-ACO

into a parallel setting. Given the run-time requirements of CP propagation this is

promising direction to explore.

A further possibility to consider is the integration of CP and other metaheuristics.

We have seen with ACO that the integration is straightforward and other studies

have considered hybrids with Genetic algorithms (Barnier and Brisset, 1998). How-

ever, other hybrids with BOA (Pelikan, Goldberg and Cantú-Paz, 1999) for instance

are potentially interesting. Here, the CP model and bayesian network could share

information to more effectively explore search spaces. For example, high probability

values for variables could be used to post constraints to the CP solver where these

variables are labeled with the value. On the other hand, inferred constraints may

be used to update probabilities in the bayesian network.

Another possible area of future work is to explore other hybrids, for example, CP

and mixed integer programming or metaheuristics with mixed integer programming.

Some of these have already been discussed earlier with studies demonstrating their

potential. Each class of methods are effective in certain settings and their relative

advantages may be used by hybrids to deal with different problem types.

In conclusion, this thesis has demonstrated that CP-Beam-ACO is an efficient

way to implement constraint-based ACO and provides a suitable framework to tackle

COPs with non-trivial hard constraints. The algorithm’s effectiveness on three case

studies is clearly seen thus making it a promising option to solve other such problems

in the future.
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CP-Beam-ACO Settings

Table A.1 shows the configuration details of CP-Beam-ACO for each of the three

problems.

Table A.1: CP-Beam-ACO run configurations.

runs exe. time # instances size (#variables) restarts
SMJS 30 10 hrs 43 8 - 192 3

MMJS 30 1 hr 30 10 - 130 3

CS 30 15 hrs 18 100 - 500 7

Table A.2 shows the parameter settings for ACO and the Beam component of

the algorithms.

Table A.2: CP-Beam-ACO parameter settings for the three case studies.

ACO Beam
variant na ρ α β q0 τmin τmax θ µ N s

SMJS MMAS 10 0.01 1.0 1.0 0.5 0.001 0.999 10 2.0 20
(hypercube)

MMJS ACS 10 0.1 1.0 1.0 0.5 - - 10 3.0 5
CS MMAS 10 0.02 1.0 6.0 0.5 0.01 4.0 10 3.0 10
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Appendix B

Strip Packing Instances and

Results

The next section gives details of the instances and provides some details the exper-

imental setup and results. For the complete results see (Thiruvady et al., 2008).

B.1 Instances and Results

Table B.1 provides details of the instances used in (Thiruvady et al., 2008) whcih

come from (Hopper and Turton, 2001). There are seven categories of problems with

each category consisting of approximately the same number of items to be placed on

the strip (e.g., Category 3 has 3 instances with either 28 or 29 items). Each category

has a known optimal height (a dense packing) and a pre-defined width which are

also specified in the table.

Table B.1: Problem Instances for Strip Packing.

Problem C1 C2 C3 C4 C5 C6 C7

Size 16-17 25 28-29 49 72-73 97 196-197
Height 20 15 30 60 90 120 240
Width 20 40 60 60 60 80 160

The following table (Table B.2) provides all the results for the algorithms for each

category of the SPP problem. The table presents best results, %-gap to theoretical

optimum, average and standard deviation over 100 runs. The columns represent

each category of problems (C1-C7), the values for each category are averages over

the three problem instances in the category.1 Best results for each category (if

unique) are marked in bold face where the differences are statistically significant.2

1Recall that the instances of each category have the same optimum objective value.
2No best results are marked where all algorithms find the global optimum.
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The percentage values indicated are the gaps to the theoretical optimum, and are

calculated as Best−Optimum
Optimum

, similarly for the mean.

Complete results for all the dataset are shown in Table B.3 where the order in

not learnt and Table B.4 shows those results where the order was learnt. The column

iter in Table B.4 specifies the average number of iterations when the best soltion was

found. Tests for statistical significance for the comparison of results were conducted

and these are shown in Table B.5.

B.2 Examples of Packings on Selected Instances

Here we show an example on a run on one of the largest instances. Given a ran-

dom order, BLF itself is able to generate very good placements on the strip (see

Figure B.1(a)). However, when the placement order is learned we can see large

improvement visually with smaller gaps in the placement.

(a) (b)

Figure B.1: Results from a problem instance with 197 items and was run for 500o it-
erations; (a) A packing obtained with using a uniformly random order (b) A packing
obtained with order learning and using both placements.
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Table B.2: Summary of Results by Category. Statistically significant results (p =
0.05) between the two best performing algorithms for an instance are marked in
boldface.

Problem C1 C2 C3 C4 C5 C6 C7

RR

Best 20 16 31 62 93 126 251
% best 0 7 3 3 3 5 5
µ 20.9 16.0 32.2 63.9 95.1 127.3 254.1
%µ 4 7 7 7 6 6 6
σ 0.24 0.00 0.23 0.36 0.51 0.48 0.69

RRF

Best 20 15 31 62 92 124 248
% best 0 0 3 3 2 3 3
µ 20.7 16.0 31.4 62.7 93.7 125.3 251.0
%µ 3 6 5 5 4 4 5
σ 0.27 0.12 0.22 0.36 0.36 0.43 0.52

LR

Best 20 15 30 62 93 126 251
% best 0 0 0 3 3 5 5
µ 20.0 15.8 31.3 63.8 95.0 128.1 254.1
%µ 0 5 4 6 6 7 6
σ 0.00 0.33 0.42 0.46 0.46 0.58 0.77

ACS1

Best 20 16 31 61 92 123 245
% best 0 7 3 2 2 2 2
µ 20.8 16.0 31.4 62.2 92.9 123.6 247.9
%µ 4 7 5 4 3 3 3
σ 0.31 0.00 0.48 0.34 0.24 0.23 0.47

ACS2

Best 20 16 31 61 92 122 245
% best 0 7 3 2 2 2 2
µ 20.8 16.0 31.5 62.5 93.0 123.8 248.4
%µ 4 7 5 4 3 3 3
σ 0.35 0.00 0.46 0.33 0.26 0.40 0.51

ACS3

Best 20 15 31 61 92 122 245
% best 0 0 3 2 2 2 2
µ 20.8 16.0 31.4 62.2 92.9 123.6 247.9
%µ 4 7 5 4 3 3 3
σ 0.36 0.07 0.47 0.33 0.26 0.30 0.45

ACS4

Best 20 15 31 61 91 122 243
% best 0 0 3 2 1 2 1
µ 20.4 15.6 31.0 61.6 92.0 122.7 246.3
%µ 2 4 3 3 2 2 3
σ 0.43 0.36 0.07 0.25 0.28 0.08 0.48
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Table B.3: Complete Breakdown of Results Without Learning Order. Statistically
significant results (p = 0.05) between the two best performing algorithms for an
instance are marked in boldface.

RR RRF LR

Best µ σ Iter. Best µ σ Iter. Best µ σ Iter.

C1-1 20 20.9 0.3 202.6 20 20.2 0.4 1260.0 20 20.0 0.0 65.7
C1-2 21 21.0 0.0 640.6 21 21.0 0.0 46.0 20 20.0 0.0 1266.5
C1-3 20 20.8 0.4 554.7 20 20.8 0.4 648.3 20 20.0 0.0 52.1

C2-1 16 16.0 0.0 688.6 15 16.0 0.2 124.1 15 15.8 0.3 416.1
C2-2 16 16.0 0.0 329.6 16 16.0 0.0 4.9 15 15.9 0.2 181.5
C2-3 16 16.0 0.0 285.2 15 16.0 0.2 54.4 15 15.5 0.5 1295.9

C3-1 31 32.0 0.1 650.7 31 31.0 0.0 693.2 30 31.0 0.3 1204.8
C3-2 32 32.5 0.5 1344.9 31 31.9 0.2 313.3 30 32.0 0.2 976.7
C3-3 31 32.0 0.1 917.8 31 31.3 0.5 1485.1 30 31.0 0.7 1649.4

C4-1 63 64.1 0.3 1487.5 62 62.9 0.2 908.7 63 64.2 0.5 1721.4
C4-2 63 63.9 0.3 1206.4 62 62.9 0.3 695.1 63 64.1 0.4 1420.3
C4-3 62 63.8 0.4 1067.7 62 62.4 0.5 1480.6 62 63.1 0.5 1889.6

C5-1 93 94.3 0.5 1439.4 93 93.1 0.3 1647.9 93 94.0 0.3 1303.5
C5-2 94 95.7 0.5 1764.5 92 93.9 0.3 1110.3 94 95.8 0.6 1849.5
C5-3 94 95.3 0.5 1581.2 93 94.1 0.4 1202.4 94 95.0 0.4 1852.0

C6-1 127 127.9 0.5 1657.4 124 125.8 0.5 1205.3 127 128.5 0.6 1498.6
C6-2 126 127.3 0.5 1711.3 124 125.0 0.4 1448.6 127 128.6 0.6 1692.0
C6-3 126 126.8 0.4 1631.5 124 125.2 0.4 1302.5 126 127.2 0.5 1633.8

C7-1 253 254.7 0.6 1776.9 251 252.5 0.6 1612.4 253 254.6 0.6 1617.1
C7-2 251 253.3 0.8 1648.3 248 249.3 0.5 1675.9 251 254.1 1.0 1984.5
C7-3 253 254.2 0.7 1852.6 250 251.1 0.5 1771.1 251 253.8 0.8 1930.0
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Table B.4: Complete Breakdown of Results with Learning Order. Statistically signif-
icant results (p = 0.05) between the two best performing algorithms for an instance
are marked in boldface.

ACS1 ACS2 ACS3 ACS4

Best µ σ Iter. Best µ σ Iter. Best µ σ Iter. Best µ σ Iter.

C1-1 20 20.8 0.4 458.0 20 20.8 0.4 715.1 20 20.8 0.4 563.2 20 20.2 0.4 1107
C1-2 21 21.0 0.0 30.2 20 21.0 0.1 96.0 20 21.0 0.2 98.3 20 20.8 0.4 347.7
C1-3 20 20.5 0.5 847.1 20 20.6 0.5 905.0 20 20.6 0.5 726.7 20 20.3 0.4 1219.5

C2-1 16 16.0 0.0 48.6 16 16.0 0.0 133.1 16 16.0 0.0 44.9 15 15.9 0.2 198.1
C2-2 16 16.0 0.0 21.8 16 16.0 0.0 44.3 15 16.0 0.1 59.4 15 15.7 0.4 634
C2-3 16 16.0 0.0 8.8 16 16.0 0.0 13.3 15 16.0 0.1 32.1 15 15.2 0.4 1342.3

C3-1 31 31.6 0.5 810.7 31 31.7 0.5 839.3 31 31.6 0.5 944.9 31 31.0 0.0 100.4
C3-2 31 31.5 0.5 1178.0 31 31.6 0.5 1151.9 31 31.4 0.5 1496 31 31.0 0.2 337
C3-3 31 31.3 0.5 1366.6 31 31.3 0.5 1305.8 31 31.2 0.4 1465.7 31 31.0 0.0 87.7

C4-1 62 62.7 0.5 1015.7 62 63.0 0.3 911.1 62 62.8 0.4 951.3 61 62.0 0.2 330.8
C4-2 61 62.0 0.3 1605.9 62 62.5 0.5 1192.8 61 62.1 0.3 1383.1 61 61.7 0.5 887.8
C4-3 61 61.9 0.3 505.5 61 61.9 0.2 408.7 61 61.9 0.2 511.6 61 61.0 0.1 655.8

C5-1 92 93.0 0.1 842.7 92 93.0 0.2 1135.5 92 92.9 0.2 879.2 91 92.0 0.1 1154.7
C5-2 92 92.8 0.4 1241.1 92 93.0 0.1 1394.3 92 92.8 0.4 1204.7 91 91.8 0.4 663.1
C5-3 92 93.0 0.2 1466.4 92 93.2 0.4 1667.5 92 93.0 0.2 1589.7 92 92.1 0.3 1554

C6-1 123 123.9 0.3 1115.6 123 124.1 0.4 1525.8 123 123.8 0.4 1106.4 122 123.0 0.1 492.3
C6-2 123 123.0 0.1 1461.2 122 123.3 0.5 1519.6 122 123.0 0.2 1316.6 122 122.0 0.0 730.8
C6-3 123 124.0 0.3 1217.7 123 124.1 0.4 1528.1 123 123.9 0.3 1140 123 123.0 0.1 1083.2

C7-1 248 249.7 0.6 1851.6 249 250.2 0.5 1811.1 249 249.7 0.5 2001.5 247 248.3 0.5 1807.2
C7-2 245 245.9 0.3 1991.3 245 246.3 0.5 1723.0 245 245.9 0.3 1764.1 243 244.3 0.5 1702.4
C7-3 247 248.3 0.5 2173.9 248 248.7 0.5 1756.1 247 248.2 0.6 2334.1 245 246.4 0.5 1850.1
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Table B.5: p-values of a two-tailed t-test with unequal variances for pairwise compar-
isons between selected algorithms; Statistically significant results (p = 0.05) between
the two best performing algorithms for an instance are marked in boldface.

RR RR RRF ACS1 ACS1 ACS3 RR RRF LR
vs vs vs vs vs vs vs vs vs

RRF LR LR ACS2 ACS3 ACS4 ACS4 ACS4 ACS4

C1-1 1.60e-05 7.80e-18 1.20e-01 1.00e+00 1.00e+00 9.50e-04 1.6e-05 1.0e+00 1.2e-01
C1-2 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.60e-01 1.2e-01 1.2e-01 1.7e-09
C1-3 1.00e+00 1.70e-09 1.70e-09 6.60e-01 6.60e-01 1.40e-01 5.7e-03 5.7e-03 1.9e-02

C2-1 1.00e+00 3.60e-02 8.10e-02 1.00e+00 1.00e+00 1.20e-01 1.2e-01 2.6e-01 3.8e-01
C2-2 1.00e+00 1.20e-01 1.20e-01 1.00e+00 1.00e+00 2.20e-02 1.9e-02 1.9e-02 1.6e-01
C2-3 1.00e+00 1.80e-03 3.70e-03 1.00e+00 1.00e+00 4.50e-09 1.7e-09 5.3e-08 1.4e-01

C3-1 2.50e-79 2.60e-19 1.00e+00 6.60e-01 1.00e+00 2.00e-04 2.5e-79 1.0e+00 1.0e+00
C3-2 5.30e-04 3.70e-03 2.60e-01 6.60e-01 6.60e-01 2.00e-02 6.4e-16 1.7e-19 8.2e-23
C3-3 2.30e-05 1.30e-05 2.70e-01 1.00e+00 6.20e-01 1.20e-01 2.5e-79 5.9e-02 1.0e+00

C4-1 7.40e-21 5.90e-01 9.40e-13 1.10e-01 6.20e-01 5.30e-08 8.6e-45 1.7e-19 4.3e-28
C4-2 2.80e-12 2.10e-01 1.20e-12 7.30e-03 4.60e-01 3.10e-02 4.4e-25 6.1e-10 7.7e-25
C4-3 6.30e-11 6.70e-04 2.00e-03 1.00e+00 1.00e+00 1.70e-27 1.3e-53 1.4e-15 2.1e-28

C5-1 6.10e-10 1.10e-01 2.00e-10 1.00e+00 1.60e-01 1.70e-27 3.2e-32 2.8e-22 2.1e-49
C5-2 1.30e-18 6.90e-01 2.50e-16 1.30e-01 1.00e+00 7.50e-08 2.9e-47 3.3e-29 3.5e-42
C5-3 1.40e-08 1.40e-01 1.10e-06 1.60e-01 1.00e+00 2.00e-13 1.3e-41 2.9e-27 1.5e-44

C6-1 1.50e-17 1.60e-02 4.50e-22 2.10e-01 5.30e-01 4.50e-09 1.7e-76 1.2e-41 3.2e-72
C6-2 2.40e-23 3.70e-07 7.00e-37 6.40e-02 1.00e+00 5.90e-37 1.5e-83 9.1e-60 2.8e-86
C6-3 2.70e-16 5.00e-02 5.80e-19 5.30e-01 4.60e-01 1.90e-16 1.5e-73 3.6e-40 7.0e-66

C7-1 3.00e-14 7.10e-01 3.00e-13 4.40e-02 1.00e+00 2.30e-09 1.6e-65 1.4e-40 1.7e-64
C7-2 1.40e-29 5.00e-02 4.20e-30 3.10e-02 1.00e+00 1.50e-15 5.6e-76 4.5e-56 4.4e-70
C7-3 1.80e-23 2.40e-01 1.30e-16 7.50e-02 6.90e-01 7.30e-12 2.0e-72 2.5e-52 1.2e-62



Appendix C

Photo Album Layout

C.1 BRIC

A brief description of the BRIC algorithm is provided here. A layout is constructed

by considering a number of photos specified by a binary tree. The internal nodes

of the tree are always H or V (horizontal or vertical, respectively) and the leaves

are photos. The internal nodes specify how a particular photo will be placed with

respect to another, i.e., either horizontally to the left or right or vertically to the top

or bottom of the other photo. See Figure C.1. This example shows how a binary tree

may be used to represent a layout of photos. All the internal nodes represent cuts

(how the photos are required to be split) which can either be horizontal or vertical

and the leaves represent photos. Here, we can also see how a layout is constructed

from the tree representation.

For each node in the tree, a bounding box is computed. This can be seen for

example with the node H9. The purpose of this box is to specify that all the photos

to be placed within the box must be have appropriate widths and height such that

they fit in it. This is enforced as follows. The layout is obtained by solving n − 1

linear equations for the n− 1 inner nodes such that the heights/widths of all photos

to be separated by vertical/horizontal cuts must sum to the height/width of the

bounding box. An nth equation is obtained by constraining either the hight/width

of the root bounding box to the height/width of the canvas which ensures that one

of the canvas dimensions is met. As a result, two separate sets of equations can be

solved constraining either the heights or widths. For one of these all the photos will

fit on the canvas and this is chosen as the solution to proceed with. For further

details of the construction of the layout see (Atkins, 2008).

The binary tree itself is constructed in the following manner. The complete

layout is constructed from scratch incrementally. An initial tree, T1 consists of a

single photo that takes up the whole canvas. To this a second photo is added, a score

143
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H9

H8

V10

V11

H7

P 1 P 3

P 2 P 4

P 5 P 6

P 1

P 2

P 3

P 4

P 5

P 6

Figure C.1: This figure shows how a layout can be represented by a binary tree.
All the internal nodes are either H or V representing horizontal or vertical cuts,
respectively. This implies that all nodes at the lower level of the tree will be split
with a horizontal or vertical line. For example, the node H9 specifies that its left
and right children must be split by a horizontal cut. The leave represent photos, e.g.
P5. The result is that P2’s with is the combined with of P1 and P3. Also highlighted,
is the bounding box around H9. The resultant mapping is shown on the canvas.

computed, and this process continues until Tn is obtained where all n photos have

been placed on the layout. For more than two nodes, a location for placing the new

photo needs to be selected. This is done by exhaustively attempting every possible

node to split on (including trying horizontal and vertical cuts) and then selecting

the m best solutions (sorted by score) to proceed with. Some of these solutions

may not permit a feasible solution either where some computed heights/widths may

negative. Such solutions are discarded.

C.2 Order Learning

The order of the photos can be obtained in three different ways. The first is to

fix an order for the whole duration of the search. This has no effect on the BRIC
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algorithm which will deterministically create the same solution of each iteration.

However, if we include a learning component, the solution constructed will converge

to a solution only when the pheromones have converged. The second method is

to fix an order for a single iteration (uniformly randomly across all photos) and

allow this order to change from iteration to iteration. This potentially has an effect

on BRIC and BRIC-ACO. The third and final method randomly selects a picture

to be added to the partial solution. This has the effect that at any time several

solutions with variable orders may be placed in the beam. This method also affects

both algorithms. The BRIC algorithm tested here uses random orders during the

solution construction.

For the second and third algorithms, the pheromone model is to pick a photo

given the previous photo in the sequence:

p(πi = j) =
τπi−1j∑

d∈D\{π1,...,πi−1} τπi−1d

(C.1)

A further pheromone model is used in addtion to the above model1. For each

photo, two pheromone models for horizontal and vertical cuts with every other

photo. For a new photo j at position i, a joint probability is computed for the

partial solution as follows:

p(π̂) =
i−1∏
k=1

τ̂πk,j,c(πk,j) (C.2)

where c(πk, j) is the cut of photo j associated with photo πk. τ̂πk,j,c(πk,j) is the

pheromone associated with these two photos given their cut.

At the end of each iteration, three different solutions are potentially used to

update the pheromones. See (Thiruvady et al., 2009) for these details, but briefly,

for each pair of photos i, j and a solution π:

τij ← min(max(τij × (1.0− ρ) + f(π)× ρ, τmin), τmax) (C.3)

where f(π) = 0 if i and j do not appear consecutively in π. The pheromones

associated with the cuts are also similarly updated. For a pair of photos i, j in π

with cut c between them:

τ̂ijc ← min(max(τ̂ijc × (1.0− ρ) + f(π)× ρ, τmin), τmax) (C.4)

1Various feasible models may be suggested but over here we aim to simply demonstrate the
usefulness of learning.
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C.3 Experiments and Results

Each algorithm is run 10 times on each instances with 500 iterations as the termi-

nating criterion. To be consistent with (Atkins, 2008) we used θ = 4. the other

parameters were set as ρ = 0.01, τmin = 0.001 and τmax = 0.999. These parameters

were determined from previous experiments and we do not claim here that these

parameters are optimal by any means. The aim here is to simply show that the

learning is effective.

The datasets that were used in (Atkins, 2008) are tested here (these are mainly

small with a maximum of 12 photos) along with others generated to demonstrate

the algorithms on large problems. In total, 14 datasets with photos ranging from

5− 70 are considered. The canvas dimensions ranged between 24− 128 units. The

suggested relative areas and aspects ratios of the photos are given. For the new

datasets, the aspect ratios were uniformly selected in the interval [0.5, 1.5] so that

no photo’s height is much greater than its width or vice versa. This ensures that

the aspect ratio is realistic. Table C.1 show the results for BRIC and BRIC-ACO.

The BRIC algorithm is run with a random order where a photo is sected anew each

time a new photo is appended to the layout. The algorithm BRIC-ACO-NL does

not attempt to learn the photo sequence or cut information. All the results where

BRIC-ACO performs the best are marked in bold face. If BRIC-ACO performs

better than BRIC but not better than BRIC-ACO-NL then the results are marked

in italics.

The first set of results are datasets obtained from Atkins (2008). The second

set of results were synthetically generated where photo aspect ratios were restricted

to the interval [0.5, 1.5]. The following details can be inferred from the name of a

dataset, for example, D7.32.24.0 has 7 photos, canvas dimensions 32 × 24 and is

instance number 0.
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Appendix D

SMJS: Comparison with CP-ACS

The original CP-ACO algorithm proposed by Meyer & Ernst (2004) used ACS for

the ACO component of their algorithm. We used MMAS for the ACO compo-

nent in our implementations since the original Beam-ACO algorithm (Blum, 2005)

used MMAS and this variant of ACO was better suited to a hybrid with beam

seach. Here, we examine CP-ACS with CP-MMAS to determine differences in

their performance.

Table D.1 shows these results. In terms of feasibility, with increasing problem

size, CP-MMAS has a clear advantage for all the problems of size 48 or more.

CP-MMAS never fails on any run. There is no clear winner when considering solu-

tion quality. However, given the feasibility results, clearly MMAS is the preferred

variant to use with CP-ACO for this problem.
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Table D.1: Results of CP-ACS and CP-MMAS for all considered instances. Sta-
tistically significant results (p = 0.05) are marked in boldface.

CP-ACS CP-MMAS

Instance best mean sd fail best mean sd fail

W8.1 8321 8321.00 0.00 0 8321 8321.00 0.00 0
W8.2 5818 5818.00 0.00 0 5818 5818.00 0.00 0
W8.3 4245 4245.00 0.00 0 4245 4245.00 0.00 0
W20.1 8504 8542.80 43.84 0 8914 9056.80 86.04 0
W20.2 5062 5076.00 14.04 0 5062 5062.00 0.00 0
W20.3 4312 4329.67 20.46 0 4312 4312.00 0.00 0
W30.1 8127 8630.00 286.89 0 8887 9068.50 127.67 0
W30.2 4542 4641.20 52.31 0 4682 4839.70 156.81 0
W30.3 4203 4256.20 49.31 0 4288 4364.20 48.36 0

RBG10.a 3840 3840.00 0.00 0 3840 3840.00 0.00 0
RBG16.a 2596 2596.00 0.00 0 2596 2596.00 0.00 0
RBG16.b 2094 2094.00 0.00 0 2094 2094.00 0.00 0
RBG21.9 4481 4481.00 3.38 0 4481 4481.00 0.00 0
RBG27.a.3 927 940.67 14.04 0 927 927.10 0.25 0
RBG27.a.15 1336 1396.60 28.79 0 1500 1543.60 18.54 0
RBG27.a.27 1076 1076.00 0.00 0 1076 1076.00 0.00 0
BRI17.a.3 1003 1131.13 203.22 0 1003 1003.00 0.00 0
BRI17.a.10 1031 1130.63 154.56 0 1031 1031.00 0.00 0
BRI17.a.17 1057 1057.00 0.00 0 1057 1057.00 0.00 0

RBG027a 5093 5135.40 23.00 0 5132 5177.70 18.51 0
RBG031a 3498 3498.00 0.00 0 3498 3498.00 0.00 0
RBG033a 3757 3757.00 0.00 0 3757 3757.00 0.00 0
RBG034a 3314 3323.90 39.80 0 3314 3362.00 31.10 0
RBG035a 3388 3413.30 35.10 0 3388 3446.10 44.41 0
RBG035a.2 3325 3325.00 0.00 0 3325 3325.00 0.00 0
RBG038a 5699 5822.00 95.20 0 5699 5914.90 83.45 0
RBG040a 5679 5695.30 28.50 0 5679 5680.70 5.74 0
RBG041a 3793 3811.80 35.90 0 3793 3906.30 89.41 0
RBG042a 3295 3399.60 59.70 0 3363 3491.20 71.08 0
RBG048a 9836 9836.00 - 29 9856 10019.30 89.26 0
RBG049a 13257 13296.00 55.20 28 13257 13401.10 72.09 0
RBG050a 12050 12066.20 37.20 0 12050 12050.90 5.11 0
RBG050b - - - 30 12039 12155.40 69.65 0
RBG050c - - - 30 11027 11115.10 65.70 0
RBG055a 6929 6990.70 58.60 2 6929 7045.50 64.32 0
RBG067a 10331 10460.10 68.50 21 10368 10485.00 65.51 0
RBG086a 16899 17062.10 94.00 6 16899 17028.80 85.06 0
RBG092a 12501 12516.30 26.60 27 12501 12530.10 35.77 0
RBG125a 14296 14399.00 105.10 27 14265 14383.20 98.45 0
RBG132 18524 18592.30 54.90 26 18524 18594.60 74.54 0
RBG132.2 18524 18620.30 110.50 24 18535 18764.50 96.63 0
RBG152 17455 17455.00 - 29 17455 17455.00 0.00 0
RBG152.2 17455 17614.30 156.60 27 17455 17505.80 64.30 0
RBG152.3 17530 17694.60 151.40 25 17458 17773.60 130.54 0
RBG172 0 - - 30 17846 17991.70 63.56 0
RBG193 0 - - 30 21401 21696.60 103.08 3
RBG193.2 0 - - 30 21401 21401.30 1.41 12



Appendix E

Traveling Tournament

The travelling tournament problem consists of a double round robin tournament

between a n teams (an even number). The tournament requires that a schedule

be built for all the teams such that all teams play a home and away game against

all other teams (2 × (n − 1) rounds). The objective is to minimize the cumulative

distance travelled by the teams given an n× n distance matrix between the teams.

There are a number of hard constraints to take into account (1) Each team must

play once every round, (2) No two teams should play consecutive games and (3)

There are at most three home and away games allowed for any team.

A CP model for this problem can be specified as follows. The decision variables

are xi,j ∈ {−n, . . . ,−1, 1, . . . , n}, i ∈ teams, j ∈ rounds. A negative value indicates

an away game for a team, for example, x4,7 = −3 specifies that team 3 plays an away

game in round 7 at team 4’s home ground. We can specify the following constraints:

∀i, j : distinct(xi,j)

∀i : xi,j 6= i ∧ xi,j 6= −i

∀i : linear(xi,j, 0)

∀i > 1, j, k : xi−1,j = k ⇒ xi,j 6= −k

∀i > 3, j : xi−3,j > 0 ∧ xi−2,j > 0 ∧ xi−1,j > 0⇒ xi,j < 0

∀i > 3, j : xi−3,j < 0 ∧ xi−2,j < 0 ∧ xi−1,j < 0⇒ xi,j < 0

The model can be further strengthened by using binary variables, e.g., yi,j, to

represent home and away games. Here, the additional constraint ∀j : linear(yi,j) =

n/2 may be defined and then a mapping between xi,j and yi,j is possible: ∀i, j :

xi,j > 0 ⇒ yi,j = 0 ∧ xi,j < 0 ⇒ yi,j = 1. In initial experiments, this model proved

to be effective and feasible solutions are easily found without backtracking.
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The issue that arises here is that the ACO learning model proves ineffective. In

addition to the models suggested by (Uthus, Riddle and Guesgen, 2009) we have

attempted three separate pheromone models which are listed below:

1. Select a team to play given the team in the previous round: O(n2)

2. Select a team to play for the home team and current round: O(n3)

3. Select a team to play given the home team and the team in the previous round

(similar to n TSP models): O(n3)

None of the above models are successful in learning which choices to make. The

reason for this could be the option (1) is too simplistic and the learning component

does not map effectively across the teams. The other options are O(n3) and learning

a large number of parameters is not effective. These reasons coupled with a large

number of hard constraints may the learning component ineffective. While the CP

model suggested here is effective the combination of CP-ACO is rendered ineffective

and CP-Beam-ACO does not provide any improvement over CP-ACO.
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