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Bayesian Reasoning

1.1 Reasoning under uncertainty
Artificial intelligence (AI), should it ever exist, will be an intelligence developed
by humans, implemented as an artifact. The level of intelligence demanded by Alan
Turing’s famous test (1950) — the ability to fool ordinary (unfoolish) humans about
whether the other end of a dialogue is being carried on by a human or by a computer
— is some indication of what AI researchers are aiming for. Such an AI would surely
transform our technology and economy. We would be able to automate a great deal
of human drudgery and paperwork. Since computers are universal, programs can be
effortlessly copied from one system to another (to the consternation of those worried
about intellectual property rights!), and the labor savings of AI support for bureau-
cratic applications of rules, medical diagnosis, research assistance, manufacturing
control, etc. promises to be enormous. If a serious AI is ever developed.

There is little doubt that an AI will need to be able to reason logically. An inability
to discover, for example, that a system’s conclusions have reached inconsistency is
more likely to be debilitating than the discovery of an inconsistency itself. For a
long time there has also been widespread recognition that practical AI systems shall
have to cope with uncertainty — that is, they shall have to deal with incomplete
evidence leading to beliefs that fall short of knowledge, with fallible conclusions and
the need to recover from error, called non-monotonic reasoning. Nevertheless, the
AI community has been slow to recognize that any serious, general-purpose AI will
need to be able to reason probabilistically, what we call here Bayesian reasoning.

There are at least three distinct forms of uncertainty which an intelligent system
operating in anything like our world shall need to cope with:

1. Ignorance. The limits of our knowledge lead us to be uncertain about many
things. Does our poker opponent have a flush or is she bluffing?

2. Physical randomness or indeterminism. Even if we know everything that we
might care to investigate about a coin and how we impart spin to it when we
toss it, there will remain an inescapable degree of uncertainty about whether
it will land heads or tails when we toss it. A die-hard determinist might claim
otherwise, that some unimagined amount of detailed investigation might some-
day reveal which way the coin will fall; but such a view is for the foreseeable
future a mere act of scientistic faith. We are all practical indeterminists.

3. Vagueness. Many of the predicates we employ appear to be vague. It is often
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unclear whether to classify a dog as a spaniel or not, a human as brave or not,
a thought as knowledge or opinion.

Bayesianism is the philosophy that asserts that in order to understand human
opinion as it ought to be, constrained by ignorance and uncertainty, the probability
calculus is the single most important tool for representing appropriate strengths of
belief. In this text we shall present Bayesian computational tools for reasoning with
and about strengths of belief as probabilities; we shall also present a Bayesian view
of physical randomness. In particular we shall consider a probabilistic account of
causality and its implications for an intelligent agent’s reasoning about its physical
environment. We will not address the third source of uncertainty above, vagueness,
which is fundamentally a problem about semantics and one which has no good anal-
ysis so far as we are aware.

1.2 Uncertainty in AI
The successes of formal logic have been considerable over the past century and have
been received by many as an indication that logic should be the primary vehicle for
knowledge representation and reasoning within AI. Logicism in AI, as this has
been called, dominated AI research in the 1960s and 1970s, only losing its grip in
the 1980s when artificial neural networks came of age. Nevertheless, even during the
heyday of logicism, any number of practical problems were encountered where logic
would not suffice, because uncertain reasoning was a key feature of the problem. In
the 1960s, medical diagnosis problems became one of the first attempted application
areas of AI programming. But there is no symptom or prognosis in medicine which
is strictly logically implied by the existence of any particular disease or syndrome;
so the researchers involved quickly developed a set of “probabilistic” relations. Be-
cause probability calculations are hard — in fact, NP hard in the number of variables
(Cooper, 1990) (i.e., computationally intractable; see §1.11) — they resorted to im-
plementing what has subsequently been called “naive Bayes” (or, “Idiot Bayes”), that
is, probabilistic updating rules which assume that symptoms are independent of each
other given diseases.1

The independence constraints required for these systems were so extreme that
the systems were received with no wide interest. On the other hand, a very popular
set of expert systems in the 1970s and 1980s were based upon Buchanan and Short-
liffe’s MYCIN, or the uncertainty representation within MYCIN which they called
certainty factors (Buchanan and Shortliffe, 1984). Certainty factors (CFs) were ob-
tained by first eliciting from experts a “degree of increased belief” which some evi-
dence e should imply for a hypothesis h, MB(h,e) ∈ [0,1], and also a corresponding

1We will look at naive Bayes models for prediction in Chapter 7.
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“degree of increased disbelief,” MD(h,e) ∈ [0,1]. These were then combined:

CF(h,e) = MB(h,e)−MD(h,e) ∈ [−1,1]

This division of changes in “certainty” into changes in belief and disbelief reflects
the curious notion that belief and disbelief are not necessarily related to one another
(cf. Buchanan and Shortliffe, 1984, section 11.4). A popular AI text, for example,
sympathetically reports that “it is often the case that an expert might have confidence
0.7 (say) that some relationship is true and have no feeling about it being not true”
(Luger and Stubblefield, 1993, p. 329). The same point can be put more simply: ex-
perts are often inconsistent. Our goal in Bayesian modeling is, at least largely, to find
the most accurate representation of a real system about which we may be receiving
inconsistent expert advice, rather than finding ways of modeling the inconsistency
itself.

Regardless of how we may react to this interpretation of certainty factors, no op-
erational semantics for CFs were provided by Buchanan and Shortliffe. This meant
that no real guidance could be given to experts whose opinions were being solicited.
Most likely, they simply assumed that they were being asked for conditional proba-
bilities of h given e and of ¬h given e. And, indeed, there finally was a probabilistic
semantics given for certainty factors: David Heckerman (1986) proved that a consis-
tent probabilistic interpretation of certainty factors2 would once again require strong
independence assumptions: in particular that, when combining multiple pieces of ev-
idence, the different pieces of evidence must always be independent of each other.
Whereas this appears to be a desirable simplification of rule-based systems, allow-
ing rules to be “modular,” with the combined impact of diverse evidence being a
compositional function of their separate impacts it is easy to demonstrate that the re-
quired independencies are frequently unavailable. The price of rule-based simplicity
is irrelevance.

Bayesian networks provide a natural representation of probabilities which allow
for (and take advantage of, as we shall see in Chapter 2) any independencies that
may hold, while not being limited to problems satisfying strong independence re-
quirements. The combination of substantial increases in computer power with the
Bayesian network’s ability to use any existing independencies to computational ad-
vantage make the approximations and restrictive assumptions of earlier uncertainty
formalisms pointless. So we now turn to the main game: understanding and repre-
senting uncertainty with probabilities.

1.3 Probability calculus
The probability calculus allows us to represent the independencies which other sys-
tems require, but also allows us to represent any dependencies which we may need.

2In particular, a mapping of certainty factors into likelihood ratios.
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FIGURE 1.1: (a) The event space U; (b) P(X); (c) P(X ∪Y ).

The probability calculus was specifically invented in the 17th century by Fermat and
Pascal in order to deal with the problems of physical uncertainty introduced by gam-
bling. But it did not take long before it was noticed that the concept of probability
could be used in dealing also with the uncertainties introduced by ignorance, leading
Bishop Butler to declare in the 18th century that “probability is the very guide to
life.” So now we introduce this formal language of probability, in a very simple way
using Venn diagrams.

Let U be the universe of possible events; that is, if we are uncertain about which
of a number of possibilities is true, we shall let U represent all of them collectively
(see Figure 1.1(a)). Then the maximum probability must apply to the true event ly-
ing within U . By convention we set the maximum probability to 1, giving us Kol-
mogorov’s first axiom for probability theory (Kolmogorov, 1933):

Axiom 1.1 P(U) = 1

This probability mass, summing or integrating to 1, is distributed over U , perhaps
evenly or perhaps unevenly. For simplicity we shall assume that it is spread evenly,
so that the probability of any region is strictly proportional to its area. For any such
region X its area cannot be negative, even if X is empty; hence we have the second
axiom (Figure 1.1(b)):

Axiom 1.2 For all X ⊆U,P(X)≥ 0

We need to be able to compute the probability of combined events, X and Y . This
is trivial if the two events are mutually exclusive, giving us the third and last axiom
(Figure 1.1(c)), known as additivity:

Axiom 1.3 For all X,Y ⊆U, if X ∩Y = /0, then P(X ∪Y ) = P(X)+P(Y )

Any function over a field of subsets of U satisfying the above axioms will be a
probability function.3

A simple theorem extends addition to events which overlap (i.e., sets which in-
tersect):

Theorem 1.1 For all X,Y ⊆U,P(X ∪Y ) = P(X)+P(Y )−P(X ∩Y ).

3A set-theoretic field is a set of sets containing U and /0 and is closed under union, intersection and
complementation.
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FIGURE 1.2: Conditional probability: P(X |Y ) = P(X ∩Y )/P(Y ).

This can be intuitively grasped from Figure 1.2: the area of X ∪Y is less than area
of X plus the area of Y because when adding the area of intersection X ∩Y has been
counted twice; hence, we simply remove the excess to find P(X ∪Y ) for any two
events X and Y .

The concept of conditional probability is crucial for the useful application of
the probability calculus. It is usually introduced by definition:

Definition 1.1 Conditional probability

P(X |Y ) =
P(X ∩Y )

P(Y )

That is, given that the event Y has occurred, or will occur, the probability that X
will also occur is P(X |Y ). Clearly, if Y is an event with zero probability, then this
conditional probability is undefined. This is not an issue for probability distributions
which are positive, since, by definition, they are non-zero over every event. A simple
way to think about probabilities conditional upon Y is to imagine that the universe of
events U has shrunk to Y . The conditional probability of X on Y is just the measure
of what is left of X relative to what is left of Y ; in Figure 1.2 this is just the ratio
of the darker area (representing X ∩Y ) to the area of Y . This way of understanding
conditional probability is justified by the fact that the conditional function P(·|Y )
is itself a probability function4 — that is, it provably satisfies the three axioms of
probability.

Another final probability concept we need to introduce is that of independence
(or, marginal independence). Two events X and Y are probabilistically independent
(in notation, X |= Y ) whenever conditioning on one leaves the probability of the other
unchanged:

Definition 1.2 Independence X |= Y ≡ P(X |Y ) = P(X)

This is provably symmetrical: X |= Y ≡ Y |= X . The simplest examples of indepen-
dence come from gambling. For example, two rolls of dice are normally independent.
Getting a one with the first roll will neither raise nor lower the probability of getting
a one the second time. If two events are dependent, then one coming true will alter
the probability of the other. Thus, the probability of getting a diamond flush in poker

4P(·|Y ) is just the function equal to P(X |Y ) for all X ⊂U .
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(five diamonds in five cards drawn) is not simply (1/4)5 = 1/1024: the probability
that the first card drawn being a diamond is 1/4, but the probability of subsequent
cards being diamonds is influenced by the fact that there are then fewer diamonds
left in the deck.

Conditional independence generalizes this concept to X and Y being indepen-
dent given some additional event Z:

Definition 1.3 Conditional independence X |= Y |Z ≡ P(X |Y,Z) = P(X |Z)

This is a true generalization because, of course, Z can be the empty set /0, when it
reduces to marginal independence. Conditional independence holds when the event
Z tells us everything that Y does about X and possibly more; once you know Z,
learning Y is uninformative. For example, suppose we have two diagnostic tests for
cancer X , an inexpensive but less accurate one, Y , and a more expensive and more
accurate one, Z. If Z is more accurate partly because it effectively incorporates all
of the diagnostic information available from Y , then knowing the outcome of Z will
render an additional test of Y irrelevant — Y will be “screened off” from X by Z.

1.3.1 Conditional probability theorems

We introduce without proof two theorems on conditional probability which will be
of frequent use:

Theorem 1.2 Total Probability Assume the set of events {Ai} is a partition of U;
i.e.,

⋃
i Ai = U and for any distinct i and j Ai∩A j = /0. Then

P(U) = ∑
i

P(Ai)

We can equally well partition the probability of any particular event B instead of the
whole event space. In other words, under the above conditions (and if ∀iAi 6= /0),

P(B) = ∑
i

P(B∩Ai)

We shall refer to either formulation under the title “Total Probability”.

Theorem 1.3 The Chain Rule Given three events A,B,C in a chain of influence
(i.e., A and C independent given B),

P(C|A) = P(C|B)P(B|A)+P(C|¬B)P(¬B|A)

assuming the conditional probabilities are defined. This allows us to divide the prob-
abilistic influence of C on A across the different states of a third variable. (Here, the
third variable is binary, but the theorem is easily generalized to variables of arbitrary
arity.)
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1.3.2 Variables

Although we have introduced probabilities over events, in most of our discussion we
shall be concerned with probabilities over random variables. A random variable is
a variable which reports the outcome of some measurement process. It can be related
to events, to be sure. For example, instead of talking about which event in a partition
{Ai} turns out to be the case, we can equivalently talk about which state xi the random
variable X takes, which we write X = xi. The set of states a variable X can take form
its state space, written ΩX , and its size (or arity) is |ΩX |.

The discussion thus far has been implicitly of discrete variables, those with a fi-
nite state space. However, we need also to introduce the concept of probability distri-
butions over continuous variables, that is, variables which range over real numbers,
like Temperature. For the most part in this text we shall be using probability distri-
butions over discrete variables (events), for two reasons. First, the Bayesian network
technology is primarily oriented towards handling discrete state variables, for ex-
ample the inference algorithms of Chapter 3. Second, for most purposes continuous
variables can be discretized. For example, temperatures can be divided into ranges
of ±5 degrees for many purposes; and if that is too crude, then they can be divided
into ranges of ±1 degree, etc.

Despite our ability to evade probabilities over continuous variables much of the
time, we shall occasionally need to discuss them. We introduce these probabilities
by first starting with a density function f (X) defined over the continuous variable
X . Intuitively, the density assigns a weight or measure to each possible value of X
and can be approximated by a finely partitioned histogram reporting samples from
X . Although the density is not itself a probability function, it can be used to generate
one so long as f (·) satisfies the conditions:

f (x)≥ 0 (1.1)∫ +∞

−∞

f (x)dx = 1 (1.2)

In words: each point value is positive or zero and all values integrate to 1. In that case
we can define the cumulative probability distribution F(·) by

F(x) = P(X ≤ x) =
∫

x′≤x
f (x′)dx′ (1.3)

This function assigns probabilities to ranges from each possible value of x down to
negative infinity. Note that we can analogously define probabilities over any contin-
uous interval of values for X , so long as the interval is not degenerate (equal to a
point). In effect, we obtain a probability distribution by discretizing the continuous
variable — i.e., by looking at the mass of the density function over intervals.
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1.4 Interpretations of probability
There have been two main contending views about how to understand probability.
One asserts that probabilities are fundamentally dispositional properties of non-deter-
ministic physical systems, the classical such systems being gambling devices, such
as dice. This view is particularly associated with frequentism, advocated in the 19th
century by John Venn (1866), identifying probabilities with long-run frequencies
of events. The obvious complaint that short-run frequencies clearly do not match
probabilities (e.g., if we toss a coin only once, we would hardly conclude that its
probability of heads is either one or zero) does not actually get anywhere, since no
claim is made identifying short-run frequencies with probabilities. A different com-
plaint does bite, however, namely that the distinction between short-run and long-run
is vague, leaving the commitments of this frequentist interpretation unclear. Richard
von Mises in the early 20th century fixed this problem by formalizing the frequency
interpretation (von Mises, 1919), identifying probabilities with frequency limits in
infinite sequences satisfying certain assumptions about randomness. Some version
of this frequency interpretation is commonly endorsed by statisticians.

A more satisfactory theoretical account of physical probability arises from Karl
Popper’s observation (1959) that the frequency interpretation, precise though it was,
fails to accommodate our intuition that probabilities of singular events exist and are
meaningful. If, in fact, we do toss a coin once and once only, and if this toss should
not participate in some infinitude (or even large number) of appropriately similar
tosses, it would not for that reason fail to have some probability of landing heads.
Popper identified physical probabilities with the propensities (dispositions) of phys-
ical systems (“chance setups”) to produce particular outcomes, whether or not those
dispositions were manifested repeatedly. An alternative that amounts to much the
same thing is to identify probabilities with counterfactual frequencies generated by
hypothetically infinite repetitions of an experiment (van Fraassen, 1989).

Whether physical probability is relativized to infinite random sequences, infinite
counterfactual sequences or chance setups, these accounts all have in common that
the assertion of a probability is relativized to some definite physical process or the
outcomes it generates.

The traditional alternative to the concept of physical probability is to think of
probabilities as reporting our subjective degrees of belief. This view was expressed
by Thomas Bayes (1958) (Figure 1.3) and Pierre Simon de Laplace (1951) two hun-
dred years ago. This is a more general account of probability in that we have sub-
jective belief in a huge variety of propositions, many of which are not at all clearly
tied to a physical process capable even in principle of generating an infinite sequence
of outcomes. For example, most of us have a pretty strong belief in the Copernican
hypothesis that the earth orbits the sun, but this is based on evidence not obviously
the same as the outcome of a sampling process. We are not in any position to gen-
erate solar systems repeatedly and observe the frequency with which their planets
revolve around the sun, for example. Bayesians nevertheless are prepared to talk
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about the probability of the truth of the Copernican thesis and can give an account of
the relation between that probability and the evidence for and against it. Since these
probabilities are typically subjective, not clearly tied to physical models, most fre-
quentists (hence, most statisticians) deny their meaningfulness. It is not insignificant
that this leaves their (usual) belief in Copernicanism unexplained.

The first thing to make clear about this dispute between physicalists and
Bayesians is that Bayesianism can be viewed as generalizing physicalist accounts
of probability. That is, it is perfectly compatible with the Bayesian view of proba-
bility as measuring degrees of subjective belief to adopt what David Lewis (1980)
dubbed the Principal Principle whenever you learn that the physical probability of
an outcome is r, set your subjective probability for that outcome to r. This is really
just common sense: you may think that the probability of a friend shaving his head
is 0.01, but if you learn that he will do so if and only if a fair coin yet to be flipped
lands heads, you’ll revise your opinion accordingly.

So, the Bayesian and physical interpretations of probability are compatible, with
the Bayesian interpretation extending the application of probability beyond what is
directly justifiable in physical terms. That is the view we adopt here. But what justi-
fies this extension?

FIGURE 1.3: Reverend Thomas Bayes (1702–1761).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10391-3&iName=master.img-420.jpg&w=225&h=240
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1.5 Bayesian philosophy
1.5.1 Bayes’ theorem

The origin of Bayesian philosophy lies in an interpretation of Bayes’ Theorem:

Theorem 1.4 Bayes’ Theorem

P(h|e) =
P(e|h)P(h)

P(e)

This is a non-controversial (and simple) theorem of the probability calculus. Under
its usual Bayesian interpretation, it asserts that the probability of a hypothesis h con-
ditioned upon some evidence e is equal to its likelihood P(e|h) times its probability
prior to any evidence P(h), normalized by dividing by P(e) (so that the conditional
probabilities of all hypotheses sum to 1). Proof is trivial.

The further claim that this is a right and proper way of adjusting our beliefs in our
hypotheses given new evidence is called conditionalization, and it is controversial.

Definition 1.4 Conditionalization After applying Bayes’ theorem to obtain P(h|e)
adopt that as your posterior degree of belief in h — or, Bel(h) = P(h|e).

Conditionalization, in other words, advocates belief updating via probabilities condi-
tional upon the available evidence. It identifies posterior probability (the probability
function after incorporating the evidence, which we are writing Bel(·)) with con-
ditional probability (the prior probability function conditional upon the evidence,
which is P(·|e)). Put thus, conditionalization may also seem non-controvertible. But
there are certainly situations where conditionalization very clearly does not work.
The two most basic such situations simply violate what are frequently explicitly
stated as assumptions of conditionalization: (1) There must exist joint priors over
the hypothesis and evidence spaces. Without a joint prior, Bayes’ theorem cannot be
used, so conditionalization is a non-starter. (2) The evidence conditioned upon, e, is
all and only the evidence learned. This is called the total evidence condition. It is a
significant restriction, since in many settings it cannot be guaranteed.

The first assumption is also significant. Many take it as the single biggest objec-
tion to Bayesianism to raise the question “Where do the numbers come from?” For
example, the famous anti-Bayesian Clark Glymour (1980) doesn’t complain about
Bayesian reasoning involving gambling devices, when the outcomes are engineered
to start out equiprobable, but doubts that numbers can be found for more interesting
cases. To this kind of objection Bayesians react in a variety of ways. In fact, the dif-
ferent varieties of response pretty much identify the different schools of Bayesianism.
Objectivists, such as Rudolf Carnap (1962) and Ed Jaynes (1968), attempt to define
prior probabilities based upon the structure of language. Extreme subjectivists, such
as de Finetti (1964), assert that it makes no difference what source your priors have:
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given that de Finetti’s representation theorem shows that non-extreme priors con-
verge in the limit (under reasonable constraints), it just doesn’t matter what priors
you adopt.

The practical application of Bayesian reasoning does not appear to depend upon
settling this kind of philosophical problem. A great deal of useful application can
be done simply by refusing to adopt a dogmatic position and accepting common-
sense prior probabilities. For example, if there are ten possible suspects in a murder
mystery, a fair starting point for any one of them is a 1 in 10 chance of guilt; or,
again, if burglaries occur in your neighborhood of 10,000 homes about once a day,
then the probability of your having been burglarized within the last 24 hours might
reasonably be given a prior probability of 1/10000.

Colin Howson points out that conditionalization is a valid rule of inference if and
only if Bel(e|h) = P(e|h), that is, if and only if your prior and posterior probability
functions share the relevant conditional probabilities (cf. Howson, 2001). This is
certainly a pertinent observation, since encountering some possible evidence may
well inform us more about defects in our own conditional probability structure than
about the hypothesis at issue. Since Bayes’ theorem has P(h|e) being proportional
to P(e|h), if the evidence leads us to revise P(e|h), we will be in no position to
conditionalize.

How to generate prior probabilities or new conditional probability structure is not
dictated by Bayesian principles. Bayesian principles advise how to update probabili-
ties once such a conditional probability structure has been adopted, given appropriate
priors. Expecting Bayesian principles to answer all questions about reasoning is ex-
pecting too much. Nevertheless, we shall show that Bayesian principles implemented
in computer programs can deliver a great deal more than the nay-sayers have ever de-
livered.

Definition 1.5 Jeffrey conditionalization Suppose your observational evidence
does not correspond specifically to proposition e, but can be represented as a
posterior shift in belief about e. In other words, posterior belief in e is not full
but partial, having shifted from P(e) to Bel(e). Then, instead of Bayesian con-
ditionalization, apply Jeffrey’s update rule for probability kinematics: Bel(h) =
P(h|e)Bel(e)+P(h|¬e)Bel(¬e) (Jeffrey, 1983).

Jeffrey’s own example is one where your hypothesis is about the color of a cloth,
the evidence proposition e describes the precise quality of your visual experience
under good light, but you are afforded a view of the cloth only under candlelight, in
such a way that you cannot exactly articulate what you have observed. Nevertheless,
you have learned something, and this is reflected in a shift in belief about the quality
of your visual experience. Jeffrey conditionalization is very intuitive, but again is not
strictly valid. As a practical matter, the need for such partial updating is common in
Bayesian modeling.
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1.5.2 Betting and odds

Odds are the ratio between the cost of a bet in favor of a proposition and the reward
should the bet be won. Thus, assuming a stake of $1 (and otherwise simply rescaling
the terms of the bet), a bet at 1:19 odds costs $1 and returns $20 should the proposi-
tion come true (with the reward being $20 minus the cost of the bet).5 The odds may
be set at any ratio and may, or may not, have something to do with one’s probabil-
ities. Bookies typically set odds for and against events at a slight discrepancy with
their best estimate of the probabilities, for their profit lies in the difference between
the odds for and against.

While odds and probabilities may deviate, probabilities and fair odds O(·) are
strictly interchangeable concepts. The fair odds in favor of h are defined simply as
the ratio of the probability that h is true to the probability that it is not:

Definition 1.6 Fair odds
O(h) =

P(h)
1−P(h)

Given this, it is an elementary matter of algebraic manipulation to find P(h) in terms
of odds:

P(h) =
O(h)

1+O(h)
(1.4)

Thus, if a coin is fair, the probability of heads is 1/2, so the odds in favor of heads
are 1:1 (usually described as “50:50”). Or, if the odds of getting “snake eyes” (two
1’s) on the roll of two dice are 1:35, then the probability of this is:

1/35
1+1/35

=
1/35

36/35
= 1/36

as will always be the case with fair dice. Or, finally, suppose that the probability an
agent ascribes to the Copernican hypothesis (CH) is zero; then the odds that agent is
giving to Copernicus having been wrong (¬CH) are infinite:

O(¬CH) =
1
0

= ∞

At these odds, incidentally, it is trivial that the agent can never reach a degree of belief
in CH above zero on any finite amount of evidence, if relying upon conditionalization
for updating belief.

With the concept of fair odds in hand, we can reformulate Bayes’ theorem in
terms of (fair) odds, which is often useful:

Theorem 1.5 Odds-Likelihood Bayes’ Theorem

O(h|e) =
P(e|h)

P(e|¬h)
O(h)

5It is common in sports betting to invert the odds, quoting the odds against a team winning, for
example. This makes no difference; the ratio is simply reversed.
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This is readily proven to be equivalent to Theorem 1.4. In English it asserts that the
odds on h conditional upon the evidence e are equal to the prior odds on h times the
likelihood ratio P(e|h) : P(e|¬h). Clearly, the fair odds in favor of h will rise if and
only if the likelihood ratio is greater than one.

1.5.3 Expected utility

Generally, agents are able to assign utility (or, value) to the situations in which they
find themselves. We know what we like, we know what we dislike, and we also know
when we are experiencing neither of these. Given a general ability to order situations,
and bets with definite probabilities of yielding particular situations, Frank Ramsey
(1931) demonstrated that we can identify particular utilities with each possible situ-
ation, yielding a utility function.

If we have a utility function U(Oi|A) over every possible outcome of a particular
action A we are contemplating, and if we have a probability for each such outcome
P(Oi|A), then we can compute the probability-weighted average utility for that action
— otherwise known as the expected utility of the action:

Definition 1.7 Expected utility

EU(A) = ∑
i

U(Oi|A)×P(Oi|A)

It is commonly taken as axiomatic by Bayesians that agents ought to maximize
their expected utility. That is, when contemplating a number of alternative actions,
agents ought to decide to take that action which has the maximum expected utility. If
you are contemplating eating strawberry ice cream or else eating chocolate ice cream,
presumably you will choose that flavor which you prefer, other things being equal.
Indeed, if you chose the flavor you liked less, we should be inclined to think that other
things are not equal — for example, you are under some kind of external compulsion
— or perhaps that you are not being honest about your preferences. Utilities have
behavioral consequences essentially: any agent who consistently ignores the putative
utility of an action or situation arguably does not have that utility.

Regardless of such foundational issues, we now have the conceptual tools nec-
essary to understand what is fair about fair betting. Fair bets are fair because their
expected utility is zero. Suppose we are contemplating taking the fair bet B on propo-
sition h for which we assign probability P(h). Then the expected utility of the bet is:

EU(B) = U(h|B)P(h|B)+U(¬h|B)P(¬h|B)

Typically, betting on a proposition has no effect on the probability that it is true
(although this is not necessarily the case!), so P(h|B) = P(h). Hence,

EU(B) = U(h|B)P(h)+U(¬h|B)(1−P(h))

Assuming a stake of 1 unit for simplicity, then by definition U(h|B) = 1−P(h) (i.e.,
this is the utility of h being true given the bet for h) while U(¬h|B) =−P(h), so,

EU(B) = (1−P(h))P(h)−P(h)(1−P(h)) = 0
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Given that the bet has zero expected utility, the agent should be no more inclined to
take the bet in favor of h than to take the opposite bet against h.

1.5.4 Dutch books

The original Dutch book argument of Ramsey (1931) (see also de Finetti, 1964)
claims to show that subjective degrees of belief, if they are to be rational, must obey
the probability calculus. It has the form of a reductio ad absurdum argument:

1. A rational agent should be willing to take either side of any combination of
fair bets.

2. A rational agent should never be willing to take a combination of bets which
guarantees a loss.

3. Suppose a rational agent’s degrees of belief violate one or more of the axioms
of probability.

4. Then it is provable that some combination of fair bets will lead to a guaranteed
loss.

5. Therefore, the agent is both willing and not willing to take this combination of
bets.

Now, the inferences to (4) and (5) in this argument are not in dispute (see §1.11 for
a simple demonstration of (4) for one case). A reductio argument needs to be resolved
by finding a prior assumption to blame, and concluding that it is false. Ramsey, and
most Bayesians to date, supposed that the most plausible way of relieving the contra-
diction of (5) is by refusing to suppose that a rational agent’s degrees of belief may
violate the axioms of probability. This result can then be generalized beyond settings
of explicit betting by taking “bets with nature” as a metaphor for decision-making
generally. For example, walking across the street is in some sense a bet about our
chances of reaching the other side.

Some anti-Bayesians have preferred to deny (1), insisting for example that it
would be uneconomic to invest in bets with zero expected value (e.g., Chihara and
Kennedy, 1979). But the ascription of the radical incoherence in (5) simply to the
willingness of, say, bored aristocrats to place bets that will net them nothing clearly
will not do: the effect of incoherence is entirely out of proportion with the proposed
cause of effeteness.

Alan Hájek (2008) has pointed out a more plausible objection to (2). In the sce-
narios presented in Dutch books there is always some combination of bets which
guarantees a net loss whatever the outcomes on the individual bets. But equally there
is always some combination of bets which guarantees a net gain — a “Good Book.”
So, one agent’s half-empty glass is another’s half-full glass! Rather than dismiss the
Dutch-bookable agent as irrational, we might commend it for being open to a gua-
ranteed win! So, Hájek’s point seems to be that there is a fundamental symmetry
in Dutch book arguments which leaves open the question whether violating proba-
bility axioms is rational or not. Certainly, when metaphorically extending betting to a
“struggle” with Nature, it becomes rather implausible that She is really out to Dutch
book us!
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Hájek’s own solution to the problem posed by his argument is to point out that
whenever an agent violates the probability axioms there will be some variation of its
system of beliefs which is guaranteed to win money whenever the original system is
guaranteed to win, and which is also capable of winning in some situations when the
original system is not. So the variant system of belief in some sense dominates the
original: it is everywhere at least as good as the original and in some places better.
In order to guarantee that your system of beliefs cannot be dominated, you must be
probabilistically coherent (see §1.11). This, we believe, successfully rehabilitates the
Dutch book in a new form.

Rather than rehabilitate, a more obviously Bayesian response is to consider the
probability of a bookie hanging around who has the smarts to pump our agent of
its money and, again, of a simpleton hanging around who will sign up the agent
for guaranteed winnings. In other words, for rational choice surely what matters is
the relative expected utility of the choice. Suppose, for example, that we are offered
a set of bets which has a guaranteed loss of $10. Should we take it? The Dutch
book assumes that accepting the bet is irrational. But, if the one and only alternative
available is another bet with an expected loss of $1,000, then it no longer seems so
irrational. An implicit assumption of the Dutch book has always been that betting is
voluntary and when all offered bets are turned down the expected utility is zero. The
further implicit assumption pointed out by Hájek’s argument is that there is always
a shifty bookie hanging around ready to take advantage of us. No doubt that is not
always the case, and instead there is only some probability of it. Yet referring the
whole matter of justifying the use of Bayesian probability to expected utility smacks
of circularity, since expectation is understood in terms of Bayesian probability.

Aside from invoking the rehabilitated Dutch book, there is a more pragmatic
approach to justifying Bayesianism, by looking at its importance for dealing with
cases of practical problem solving. We take Bayesian principles to be normative,
and especially to be a proper guide, under some range of circumstances, to evalu-
ating hypotheses in the light of evidence. The form of justification that we think is
ultimately most compelling is the “method of reflective equilibrium,” generally at-
tributed to Goodman (1973) and Rawls (1971), but adumbrated by Aristotle in his
Nicomachian Ethics. In a nutshell, it asserts that the normative principles to accept
are those which best accommodate our basic, unshakable intuitions about what is
good and bad (e.g., paradigmatic judgments of correct inference in simple domains,
such as gambling) and which best integrate with relevant theory and practice. We
now present some cases which Bayesian principle handles readily, and better than
any alternative normative theory.

1.5.5 Bayesian reasoning examples

1.5.5.1 Breast cancer

Suppose the women attending a particular clinic show a long-term chance of 1 in
100 of having breast cancer. Suppose also that the initial screening test used at the
clinic has a false positive rate of 0.2 (that is, 20% of women without cancer will test
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positive for cancer) and that it has a false negative rate of 0.1 (that is, 10% of women
with cancer will test negative). The laws of probability dictate from this last fact that
the probability of a positive test given cancer is 90%. Now suppose that you are such
a woman who has just tested positive. What is the probability that you have cancer?

This problem is one of a class of probability problems which has become no-
torious in the cognitive psychology literature (cf. Tversky and Kahneman, 1974). It
seems that very few people confronted with such problems bother to pull out pen and
paper and compute the right answer via Bayes’ theorem; even fewer can get the right
answer without pen and paper. It appears that for many the probability of a positive
test (which is observed) given cancer (i.e., 90%) dominates things, so they figure that
they have quite a high chance of having cancer. But substituting into Theorem 1.4
gives us:

P(Cancer|Pos) =
P(Pos|Cancer)P(Cancer)

P(Pos)

Note that the probability of Pos given Cancer — which is the likelihood 0.9 — is
only one term on the right hand side; the other crucial term is the prior probability of
cancer. Cognitive psychologists studying such reasoning have dubbed the dominance
of likelihoods in such scenarios “base-rate neglect,” since the base rate (prior proba-
bility) is being suppressed (Kahneman and Tversky, 1973). Filling in the formula and
computing the conditional probability of Cancer given Pos gives us quite a different
story:

P(Cancer|Pos) =
P(Pos|Cancer)P(Cancer)

P(Pos)

=
P(Pos|Cancer)P(Cancer)

P(Pos|Cancer)P(Cancer)+P(Pos|¬Cancer)P(¬Cancer)

=
0.9×0.01

0.9×0.01+0.2×0.99

=
0.009

0.009+0.198
≈ 0.043

Now the discrepancy between 4% and 80 or 90% is no small matter, particularly
if the consequence of an error involves either unnecessary surgery or (in the reverse
case) leaving a cancer untreated. But decisions similar to these are constantly being
made based upon “intuitive feel” — i.e., without the benefit of paper and pen, let
alone Bayesian networks (which are simpler to use than paper and pen!).

1.5.5.2 People v. Collins

The legal system is replete with misapplications of probability and with incorrect
claims of the irrelevance of probabilistic reasoning as well.

In 1964 an interracial couple was convicted of robbery in Los Angeles, largely on
the grounds that they matched a highly improbable profile, a profile which fit witness
reports (Sullivan, Sullivan). In particular, the two robbers were reported to be
• A man with a mustache
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• Who was black and had a beard
• And a woman with a ponytail
• Who was blonde
• The couple was interracial
• And were driving a yellow car

The prosecution suggested that these characteristics had the following probabilities
of being observed at random in the LA area:

1. A man with a mustache 1/4
2. Who was black and had a beard 1/10
3. And a woman with a ponytail 1/10
4. Who was blonde 1/3
5. The couple was interracial 1/1000
6. And were driving a yellow car 1/10

The prosecution called an instructor of mathematics from a state university who ap-
parently testified that the “product rule” applies to this case: where mutually inde-
pendent events are being considered jointly, the joint probability is the product of the
individual probabilities.6 This last claim is, in fact, correct (see Problem 2 below);
what is false is the idea that the product rule is relevant to this case. If we label the
individual items of evidence ei (i = 1, . . . ,6), the joint evidence e, and the hypothesis
that the couple was guilty h, then what is claimed is

P(e|¬h) = ∏
i

P(ei|¬h) = 1/12000000

The prosecution, having made this inference, went on to assert that the probability
the couple were innocent was no more than 1/12000000. The jury convicted.

As we have already suggested, the product rule does not apply in this case. Why
not? Well, because the individual pieces of evidence are obviously not independent.
If, for example, we know of the occupants of a car that one is black and the other has
blonde hair, what then is the probability that the occupants are an interracial couple?
Clearly not 1/1000! If we know of a man that he has a mustache, is the probability of
having a beard unchanged? These claims are preposterous, and it is simply shameful
that a judge, prosecutor and defence attorney could not recognize how preposterous
they are — let alone the mathematics “expert” who testified to them. Since e2 implies
e1, while e2,e3,e4 jointly imply e5 (to a fair approximation), a far better estimate for
P(e|¬h) is P(e2|¬h)P(e3|¬h)P(e4|¬h)P(e6|¬h) = 1/3000.

To be sure, if we accepted that the probability of innocence were a mere 1/3000
we might well accept the verdict. But there is a more fundamental error in the pros-
ecution reasoning than neglecting the conditional dependencies in the evidence. If,

6Coincidentally, this is just the kind of independence required for certainty factors to apply.
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unlike the judge, prosecution and jury, we take a peek at Bayes’ theorem, we discover
that the probability of guilt P(h|e) is not equal to 1−P(e|¬h); instead

P(h|e) =
P(e|h)P(h)

P(e|h)P(h)+P(e|¬h)P(¬h)

Now if the couple in question were guilty, what are the chances the evidence accumu-
lated would have been observed? That’s a rather hard question to answer, but feeling
generous towards the prosecution, let us simplify and say 1. That is, let us accept that
P(e|h) = 1. Plugging in our assumptions we have thus far:

P(h|e) =
P(h)

P(h)+P(¬h)/3000

We are missing the crucial prior probability of a random couple being guilty of
the robbery. Note that we cannot here use the prior probability of, for example, an
interracial couple being guilty, since the fact that they are interracial is a piece of the
evidence. The most plausible approach to generating a prior of the needed type is to
count the number of couples in the LA area and give them an equal prior probability.
In other words, if N is the number of possible couples in the LA area, P(h) = 1/N. So,
what is N? The population at the time was about 6.5 million people (Demographia,
Demographia). If we conservatively take half of them as being eligible to be counted
(e.g., being adult humans), this gives us 1,625,000 eligible males and as many fe-
males. If we simplify by supposing that they are all in heterosexual partnerships, that
will introduce a slight bias in favor of innocence; if we also simplify by ignoring the
possibility of people traveling in cars with friends, this will introduce a larger bias
in favor of guilt. The two together give us 1,625,000 available couples, suggesting a
prior probability of guilt of 1/1625000. Plugging this in we get:

P(h|e) =
1/1625000

1/1625000+(1−1/1625000)/3000
≈ 0.002

In other words, even ignoring the huge number of trips with friends rather than
partners, we obtain a 99.8% chance of innocence and so a very large probability of a
nasty error in judgment. The good news is that the conviction (of the man only!) was
subsequently overturned, partly on the basis that the independence assumptions are
false. The bad news is that the appellate court finding also suggested that probabilistic
reasoning is just irrelevant to the task of establishing guilt, which is a nonsense. One
right conclusion about this case is that, assuming the likelihood has been properly
worked out, a sensible prior probability must also be taken into account. In some
cases judges have specifically ruled out all consideration of prior probabilities, while
allowing testimony about likelihoods! Probabilistic reasoning which simply ignores
half of Bayes’ theorem is dangerous indeed!

Note that we do not claim that 99.8% is the best probability of innocence that
can be arrived at for the case of People v. Collins. What we do claim is that, for the
particular facts represented as having a particular probabilistic interpretation, this is
far closer to a reasonable probability than that offered by the prosecution, namely
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1/12000000. We also claim that the forms of reasoning we have here illustrated are
crucial for interpreting evidence in general: namely, whether the offered items of
evidence are conditionally independent and what the prior probability of guilt may
be.

1.6 The goal of Bayesian AI
The most commonly stated goal for artificial intelligence is that of producing an
artifact which performs difficult intellectual tasks at or beyond a human level of
performance. Of course, machine chess programs have satisfied this criterion for
some time now. Although some AI researchers have claimed that therefore an AI
has been produced — that denying this is an unfair shifting of the goal line — it is
absurd to think that we ought to be satisfied with programs which are strictly special-
purpose and which achieve their performance using techniques that deliver nothing
when applied to most areas of human intellectual endeavor.

Turing’s test for intelligence appears to be closer to satisfactory: fooling ordinary
humans with verbal behavior not restricted to any domain would surely demonstrate
some important general reasoning ability. Many have pointed out that the conditions
for Turing’s test, strictly verbal behavior without any afferent or efferent nervous ac-
tivity, yield at best some kind of disembodied, ungrounded intelligence. John Searle’s
Chinese Room argument (Searle, 1980) for example, can be interpreted as making
such a case; for this kind of interpretation of Searle see Harnad (1989) and Korb
(1991). A more convincing criterion for human-like intelligence is to require of an
artificial intelligence that it be capable of powering a robot-in-the-world in such a
way that the robot’s performance cannot be distinguished from human performance
in terms of behavior (disregarding, for example, whether the skin can be so distin-
guished). The program that can achieve this would surely satisfy any sensible AI
researcher, or critic, that an AI had been achieved.

We are not, however, actually motivated by the idea of behaviorally cloning hu-
mans. If all we wish to do is reproduce humans, we would be better advised to employ
the tried and true methods we have always had available. Our motive is to understand
how such performance can be achieved. We are interested in knowing how humans
perform the many interesting and difficult cognitive tasks encompassed by AI —
such as, natural language understanding and generation, planning, learning, decision
making — but we are also interested in knowing how they might be performed other-
wise, and in knowing how they might be performed optimally. By building artifacts
which model our best understanding of how humans do these things (which can be
called descriptive artificial intelligence) and also building artifacts which model
our best understanding of what is optimal in these activities (normative artificial
intelligence), we can further our understanding of the nature of intelligence and also
produce some very useful tools for science, government and industry.

As we have indicated through example, medical, legal, scientific, political and
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most other varieties of human reasoning either consider the relevant probabilistic
factors and accommodate them or run the risk of introducing egregious and damaging
errors. The goal of a Bayesian artificial intelligence is to produce a thinking agent
which does as well or better than humans in such tasks, which can adapt to stochastic
and changing environments, recognize its own limited knowledge and cope sensibly
with these varied sources of uncertainty.

1.7 Achieving Bayesian AI
Given that we have this goal, how can we achieve it? The first step is to develop
algorithms for doing Bayesian conditionalization properly and, insofar as possible,
efficiently. This step has already been achieved, and the relevant algorithms are de-
scribed in Chapters 2 and 3. The next step is to incorporate methods for computing
expected utilities and develop methods for maximizing utility in decision making.
We describe algorithms for this in Chapter 4. We would like to test these ideas in
application: we describe some Bayesian network applications in Chapter 5.

These methods for probability computation are fairly well developed and their
improvement remains an active area of research in AI today. The biggest obstacles
to Bayesian AI having a broad and deep impact outside of the research community
are the difficulties in developing applications, difficulties with eliciting knowledge
from experts, and integrating and validating the results. One issue is that there is no
clear methodology for developing, testing and deploying Bayesian network technol-
ogy in industry and government — there is no recognized discipline of “software
engineering” for Bayesian networks. We make a preliminary effort at describing one
— Knowledge Engineering with Bayesian Networks (KEBN) in Part III, including
its illustration in case studies of Bayesian network development in Chapter 11.

Another important response to the difficulty of building Bayesian networks by
hand is the development of methods for their automated learning — the machine
learning of Bayesian networks (aka “data mining”). In Part II we introduce and de-
velop the main methods for learning Bayesian networks with reference to the theory
of causality underlying them. These techniques logically come before the knowledge
engineering methodology, since that draws upon and integrates machine learning
with expert elicitation.

1.8 Are Bayesian networks Bayesian?
Many AI researchers like to point out that Bayesian networks are not inherently
Bayesian at all; some have even claimed that the label is a misnomer. At the 2002
Australasian Data Mining Workshop, for example, Geoff Webb made the former
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claim. Under questioning it turned out he had two points in mind: (1) Bayesian net-
works are frequently “data mined” (i.e., learned by some computer program) via
non-Bayesian methods. (2) Bayesian networks at bottom represent probabilities; but
probabilities can be interpreted in any number of ways, including as some form of
frequency; hence, the networks are not intrinsically either Bayesian or non-Bayesian,
they simply represent values needing further interpretation.

These two points are entirely correct. We shall ourselves present non-Bayesian
methods for automating the learning of Bayesian networks from statistical data. We
shall also present Bayesian methods for the same, together with some evidence of
their superiority. The interpretation of the probabilities represented by Bayesian net-
works is open so long as the philosophy of probability is considered an open ques-
tion. Indeed, much of the work presented here ultimately depends upon the probabil-
ities being understood as physical probabilities, and in particular as propensities or
probabilities determined by propensities. Nevertheless, we happily invoke the Prin-
cipal Principle: where we are convinced that the probabilities at issue reflect the true
propensities in a physical system we are certainly going to use them in assessing our
own degrees of belief.

The advantages of the Bayesian network representations are largely in simpli-
fying conditionalization, planning decisions under uncertainty and explaining the
outcome of stochastic processes. These purposes all come within the purview of a
clearly Bayesian interpretation of what the probabilities mean, and so, we claim, the
Bayesian network technology which we here introduce is aptly named: it provides
the technical foundation for a truly Bayesian artificial intelligence.

1.9 Summary
How best to reason about uncertain situations has always been of concern. From
the 17th century we have had available the basic formalism of probability calculus,
which is far and away the most promising formalism for coping with uncertainty.
Probability theory has been used widely, but not deeply, since then. That is, the el-
ementary ideas have been applied to a great variety of problems — e.g., actuarial
calculations for life insurance, coping with noise in measurement, business decision
making, testing scientific theories, gambling — but the problems have typically been
of highly constrained size, because of the computational infeasibility of conditional-
ization when dealing with large problems. Even in dealing with simplified problems,
humans have had difficulty handling the probability computations. The development
of Bayesian network technology automates the process and so promises to free us
from such difficulties. At the same time, improvements in computer capacity, to-
gether with the ability of Bayesian networks to take computational advantage of any
available independencies between variables, promise to both widen and deepen the
domain of probabilistic reasoning.
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1.10 Bibliographic notes
An excellent source of information about different attempts to formalize reasoning
about uncertainty — including certainty factors, non-monotonic logics, Dempster-
Shafer calculus, as well as probability — is the anthology Readings in Uncertain
Reasoning edited by Shafer and Pearl (1990). Three polemics against non-Bayesian
approaches to uncertainty are those by Drew McDermott (1987), Peter Cheeseman
(1988) and Kevin Korb (1995). For understanding Bayesian philosophy, Ramsey’s
original paper “Truth and Probability” is beautifully written, original and compelling
(1931); for a more comprehensive and recent presentation of Bayesianism see How-
son and Urbach’s Scientific Reasoning (2007). For Bayesian decision analysis see
Richard Jeffrey’s The Logic of Decision (1983). DeGroot and Schervish (2002) pro-
vide an accessible introduction to both the probability calculus and statistics.

Karl Popper’s original presentation of the propensity interpretation of probability
is (Popper, 1959). This view is related to the elaboration of a probabilistic account
of causality in recent decades. Wesley Salmon (1984) provides an overview of prob-
abilistic causality.

Naive Bayes models, despite their simplicity, have done surprisingly well as pre-
dictive classifiers for data mining problems; see Chapter 7.

1.11 Technical notes
A Dutch book
Here is a simple Dutch book. Suppose someone assigns P(A) =−0.1, violating prob-
ability Axiom 2. Then O(A) =−0.1/(1− (−0.1)) =−0.1/1.1. The reward for a bet
on A with a $1 stake is $(1−P(U)) = $1.1 if A comes true and $−P(U) = $0.1
if A is false. That’s everywhere positive and so is a “Good Book.” The Dutch book
simply requires this agent to take the fair bet against A, which has the payoffs −$1.1
if A is true and −$0.1 otherwise.

The rehabilitated Dutch book
Following Hájek, we can show that incoherence (violating the probability axioms)
leads to being “dominated” by someone who is coherent — that is, the coherent bettor
can take advantage of offered bets that the incoherent bettor cannot and otherwise
will do as well.

Suppose Ms. Incoherent assigns PI(U) < 1 (where U is the universal event that
must occur), for example. Then Ms. Incoherent will take any bet for U at odds of
PI(U)/(1−PI(U)) or greater. But Ms. Coherent has assigned PC(U) = 1, of course,
and so can take any bet for U at any odds offered greater than zero. So for the odds
within the range [0, PI(U)

1−PI(U) ] Ms. Coherent is guaranteed a profit whereas Ms. Inco-
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herent is sitting on her hands.

NP hardness
A problem is Non-deterministic Polynomial-time (NP) if it is solvable in polynomial
time on a non-deterministic Turing machine. A problem is Non-deterministic Poly-
nomial time hard (NP hard) if every problem that is NP can be translated into this NP
hard problem in polynomial time. If there is a polynomial time solution to any NP
hard problem, then because of polynomial time translatability for all other NP prob-
lems, there must be a polynomial time solution to all NP problems. No one knows
of a polynomial time solution to any NP hard problem; the best known solutions
are exponentially explosive. Thus, “NP hard” problems are generally regarded as
computationally intractable. (The classic introduction to computational complexity
is Garey and Johnson (1979).)

1.12 Problems
Probability Theory

Problem 1

Prove that the conditional probability function P(·|e), if well defined, is a probability
function (i.e., satisfies the three axioms of Kolmogorov).

Problem 2

Given that two pieces of evidence e1 and e2 are conditionally independent given the
hypothesis — i.e., P(e1|e2,h) = P(e1|h) — prove the “product rule”: P(e1,e2|h) =
P(e1|h)×P(e2|h).

Problem 3

Prove the theorems of §1.3.1, namely the Total Probability theorem and the Chain
Rule.

Problem 4

There are five containers of milk on a shelf; unbeknownst to you, two of them have
passed their use-by date. You grab two at random. What’s the probability that neither
have passed their use-by date? Suppose someone else has got in just ahead of you,
taking one container, after examining the dates. What’s the probability that the two
you take at random after that are ahead of their use-by dates?
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Problem 5

The probability of a child being a boy (or a girl) is 0.5 (let us suppose). Consider all
the families with exactly two children. What is the probability that such a family has
two girls given that it has at least one girl?

Problem 6

The frequency of male births at the Royal Women’s Hospital is about 51 in 100. On
a particular day, the last eight births have been female. The probability that the next
birth will be male is:

1. About 51%
2. Clearly greater than 51%
3. Clearly less than 51%
4. Almost certain
5. Nearly zero

Bayes’ Theorem

Problem 7

After winning a race, an Olympic runner is tested for the presence of steroids. The
test comes up positive, and the athlete is accused of doping. Suppose it is known that
5% of all victorious Olympic runners do use performance-enhancing drugs. For this
particular test, the probability of a positive finding given that drugs are used is 95%.
The probability of a false positive is 2%. What is the (posterior) probability that the
athlete did in fact use steroids, given the positive outcome of the test?

Problem 8

You consider the probability that a coin is double-headed to be 0.01 (call this option
h′); if it isn’t double-headed, then it’s a fair coin (call this option h). For whatever
reason, you can only test the coin by flipping it and examining the coin (i.e., you
can’t simply examine both sides of the coin). In the worst case, how many tosses do
you need before having a posterior probability for either h or h′ that is greater than
0.99, i.e., what’s the maximum number of tosses until that happens?

Problem 9

(Adapted from Fischoff and Bar-Hillel (1984).) Two cab companies, the Blue and
the Green, operate in a given city. Eighty-five percent of the cabs in the city are Blue;
the remaining 15% are Green. A cab was involved in a hit-and-run accident at night.
A witness identified the cab as a Green cab. The court tested the witness’ ability to
distinguish between Blue and Green cabs under night-time visibility conditions. It
found that the witness was able to identify each color correctly about 80% of the
time, but confused it with the other color about 20% of the time.
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What are the chances that the errant cab was indeed Green, as the witness
claimed?

Odds and Expected Value

Problem 10

Construct a Dutch book against someone who violates the Axiom of Additivity.
That is, suppose a Mr. Fuzzy declares about the weather tomorrow that P(Sunny) =
0.5,P(Inclement) = 0.5, and P(Sunny or inclement) = 0.5. Mr. Fuzzy and you agree
about what will count as sunny and as inclement weather and you both agree that they
are incompatible states. How can you construct a Dutch book against Fuzzy, using
only fair bets?

Problem 11

A bookie offers you a ticket for $5.00 which pays $6.00 if Manchester United beats
Arsenal and nothing otherwise. What are the odds being offered? To what probability
of Manchester United winning does that correspond?

Problem 12

You are offered a Keno ticket in a casino which will pay you $1 million if you win!
It only costs you $1 to buy the ticket. You choose 4 numbers out of a 9x9 grid of
distinct numbers. You win if all of your 4 numbers come up in a random draw of four
from the 81 numbers. What is the expected dollar value of this gamble?

Applications

Problem 13

(Note: this is the case of Sally Clark, convicted in the UK in 1999, found innocent on
appeal in 2003, and tragically died in 2007 of alcohol poisoning. See Innocent, 2002.)
A mother was arrested after her second baby died a few months old, apparently of
sudden infant death syndrome (SIDS), exactly as her first child had died a year earlier.
According to prosecution testimony, about 2 in 17200 babies die of SIDS. So, accord-
ing to their argument, there is only a probability of (2/17200)2 ≈ 1/72000000 that
two such deaths would happen in the same family by chance alone. In other words,
according to the prosecution, the woman was guilty beyond a reasonable doubt. The
jury returned a guilty verdict, even though there was no significant evidence of guilt
presented beyond this argument. Which of the following is the truth of the matter?
Why?

1. Given the facts presented, the probability that the woman is guilty is greater
than 99%, so the jury decided correctly.

2. The argument presented by the prosecution is irrelevant to the mother’s guilt
or innocence.

3. The prosecution argument is relevant but inconclusive.
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4. The prosecution argument only establishes a probability of guilt of about 16%.

5. Given the facts presented, guilt and innocence are equally likely.

Problem 14

A DNA match between the defendant and a crime scene blood sample has a proba-
bility of 1/100000 if the defendant is innocent. There is no other significant evidence.

1. What is the probability of guilt?
2. Suppose we agree that the prior probability of guilt under the (unspecified)

circumstances is 10%. What then is the probability of guilt?
3. The suspect has been picked up through a universal screening program applied

to all Australians seeking a Medicare card. So far, 10 million people have been
screened. What then is the probability of guilt?
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