
DataZapper: A Tool for Generating Incomplete Datasets

Yingying Wen, Kevin B. Korb and Ann E. Nicholson
Bayesian Intelligence Pty Ltd,

2/21 The Parade, Clarinda, VIC 3169, Australia
ying100@yahoo.com,

{kevin.korb,ann.nicholson}@bayesian-intelligence.com

May 31, 2010

Abstract
Evaluating the relative performance of machine learners on incomplete data is important be-
cause almost all non-artificial data sets are incomplete. Machine learning evaluation, however,
is often best done with artificial data, so here we introduce DataZapper, a tool for uncreating
data. Given a dataset containing joint samples over variables, DataZapper will make a speci-
fied percentage of observed values disappear, replaced by an indication that the measurement
failed. Since the causal mechanisms of measurement that result in failed measurements may
depend in arbitrary ways upon the system under study, it is important to be able to produce
incomplete data sets which allow for such arbitrary dependencies. DataZapper is the only tool
that allows any kind of dependence, and any degree of dependence, in its generation of missing
data. We illustrate its use in a machine learning experiment and offer it to the data mining and
machine learning communities.

Keywords: Machine learning, incomplete data, data generation, data analysis, absent data,
missing data, data mining, machine learning evaluation.

1 INTRODUCTION

Machine learning (ML) research aims at finding the most effective algorithms for constructing
models from data. Therefore, machine learning researchers need to find the means for assessing the
performance of different ML algorithms applied to common datasets representing varying domains
and degrees of difficulty. Although much work in machine learning has concentrated upon data
without noise, real-world data always have noise, with the most extreme form being simply the
absence of a measured value. In consequence, interest has grown in finding new methods to cope
with incomplete datasets and in assessing those methods (e.g., (1; 2; 3)).

Absence of data values is ubiquitous in part because there are many ways in which measure-
ments can fail. We illustrate with the simple causal Bayesian network of Figure 1. We shall assume
that joint observations of these variables come from sample surveys, but similar failures to mea-
sure can arise from any measurement technique. First, some missing values may arise simply from
survey takers entirely overlooking a question, independently of what the question is about or the
values of any variables. Second, the failure to measure particular variables may depend upon the
values of other variables; for example, it may turn out that lawyers as a class are less inclined to
reveal their incomes than people of other occupations. Third, the failure to measure may be sen-
sitive additionally to the unmeasured value of the variable at issue; for example, it may be that it
is primarily the wealthy lawyers who are reluctant to reveal their incomes. Following Rubin (4), it
has become common to refer to these three mechanisms for values to be missed as, respectively,
missing completely at random (MCAR), missing at random (MAR) and not missing at random
(NMAR). These names are somewhat misleading, and we shall below present reasons for adopting
a more descriptive nomenclature.

1

age

house

income occupation

automobile

Figure 1: An example model.

Figure 2: Example 1 of ML research on varying missing values. Classification of the Iris data from
(5).

Given the prevalence of incompleteness in real data, and its variety, it is important for ML
researchers to investigate how their various algorithms perform given these different types of in-
complete data, even if the actual mechanism for real data to go missing is unknown.

Of course, ML researchers do undertake these types of experiments with different missing data.
For example, Ghahramani and Jordan (5) evaluated the performance of classification with missing
data using Expectation-Maximization (EM) and mean imputation (IM) (see Figure 2). Gill et al.
(6) examined the performance of artificial neural networks (ANNs) and support vector machines
(SVMs) on MAR data. Another example is Richman et al. (7), who compared different methods of
handling missing values and presented results in terms of mean absolute error (MAE) as shown in
Figure 3. They used real data with some values removed randomly, that is, MCAR data.

However, it is difficult using only real data to compare the performance of algorithms for ma-
chine learning and methods for dealing with missing values, since the nature of the real system,
including the mechanisms whereby data go missing, is at issue; it is difficult or impossible to de-
termine which algorithm has produced a model closer to reality. For machine learning research, we
want to test against artificial data generated from a known system with a known mechanism causing
values to go missing. This provides more flexibility with the type of missing mechanisms, the type
of datasets and the degrees of dependence. Moreover, performances can then be evaluated against
the true model.

Here we present DataZapper, a versatile software tool for generating artificial datasets with
missing values. DataZapper renders some values in a dataset absent according to specified con-
ditions based upon any variable and any value within that dataset; these conditions can be tuned
precisely for degrees of dependence, allowing for systematic experimentation. We shall make this

2

Figure 3: Example 2 of ML research on varying missing values. A bar chart illustrating the differ-
ence of variance between the original and imputed data sets from (7).
tool available to machine learning community via the Weka1 machine learning platform. One of
our motivations in producing this tool is to encourage the machine learning community to explore
varieties of incompleteness beyond MCAR, which is the only kind assumed by many algorithms,
such as the expectation maximization (EM) technique for replacing missing values in Weka. With
a tool granting easy access to more realistic forms of incompleteness we expect more attention to
them will be given.

The only previously reported tool we know of for generating incomplete data is that of Francois
and Leray (8). They employ Bayesian networks (BNs) as a useful way to generate artificial data
with missing values. Unfortunately, their tool is limited to MCAR and limited forms of MAR
incompleteness, with no ability to produce NMAR data. As Francois and Leray point out, all of
these forms of generating missing data can be useful for generic software testing, beyond machine
learning research.

The structure of our paper is as follows. Section 2 describes the three absent data mechanisms
and introduces our nomenclature for them. In Section 3 we present a BNF (Backus-Naur Form (9))
grammar for scripting DataZapper. In Section 4 we present the details of DataZapper, including
data formats in Section 4.1 and an overview of how it works in Section 4.2. Section 5 illustrates
DataZapper’s use in an experimental setting.

2 ABSENT DATA MECHANISMS

A dataset is a matrix in which rows represent the cases (joint samples) and columns represent
variables measured for each case. Ideally, a dataset has all the cells filled—i.e., it is a complete data
set. However, most real datasets have some values unobserved—i.e., they are incomplete.

As we mentioned, Rubin (4) introduced and named three types of missing data mechanisms.
We shall now motivate the adoption of new names for these. First, we prefer to talk of “absent
data” rather than “missing data”, for the simple but sufficient reason that “absent” has a natural
nominal form, “absence”, while “missing” leads to the awkward neologism “missingness”. More
significantly, two of Rubin’s labels are clearly inadequately descriptive of the mechanisms involved:

1http://www.cs.waikto.ac.nz/ml/weka/

3

<m-statement> :: = if <antecedent> then <consequent>
<antecedent> ::= <condition>*
<condition> ::= <variable> in <range>
<variable> ::= alpha alphanum*
<range> ::= [<value>, <value>]
<value> ::= alpha alphanum* | number | symbol
<consequent> ::= (<prob>) <variable>*
<prob> ::= number

Figure 4: BNF grammar for generating absent data
Missing completely at random (MCAR): as the absence of values is independent of all variable

values, including the value for this particular cell, this label is actually appropriate. Therefore,
we propose calling these cases Absent Completely At Random (ACAR).

Missing at random (MAR): these missing cases have arbitrary dependencies upon the values of
other variables. In consequence, they may not even be random at all, but functionally de-
pendent upon the values of other variables in extreme cases. Hence, we prefer calling them
Absent under Other Dependence (AOD).2

Not missing at random (NMAR): The natural way of interpreting this
phrase is by negating the second kind of “missingness”, which would be entirely wrong.
This case is simply a generalization of AOD, allowing the absence of data to depend also
upon the actual value which has failed to be measured. Hence, we have Absent under Self
and Other Dependence (ASOD).3

We submit that the most common case in real data is the case most commonly ignored, ASOD,
where the values going unmeasured depend both on the values of some other variables and the
absent values themselves, as in wealthy lawyers hiding their wealth.

3 SCRIPTING DATAZAPPER

The specifications for how the data should go missing are made in a simple scripting language,
whose BNF grammar is shown in Figure 4. These rules are applied to a dataset file to generate a
new dataset file with some observed values replaced by a token indicating absence. The basic form
of a sentence is that of an “if... then...” production rule. The antecedent describes the dependencies
that absence has on variables and values in the system, while the consequent lists the variables that
take absent values on these conditions and with what probability. If the antecedent is empty, then the
absent data generation is unconditional—i.e., the data are ACAR in so far as this production rule is
concerned. If the consequent is empty, then the absence mechanism is applied to all variables in the
dataset. When the data are AOD or ASOD, the antecedent grammar rule specifies which variable(s)
the absence depends upon and for what values or value ranges. The effects of the script rules are
cumulative. The result is a language in which any strength of dependence upon any set of variables
can be specified, and such dependencies may be combined arbitrarily. For example, “OR” can be
represented by having two different conditions.

Figure 5 shows some examples of the absent data specifications, across the range of types, to-
gether with a corresponding English description. Note that example 6 is of a mixed type, producing
AOD for variable D and ASOD for variable A.

2We described this as absent under dependence (AUD) in (10).
3We described this as absent under self-dependence (AUSD) in (10).

4

BNF:

1. if then (20)

2. if then (30) A C

3. if C in [?] then (40) E

4. if Gender in [F] Age in [10, 20] then (40) Income

5. if Gender in [F] Income in [70000, 90000] then (40) Income

6. if A in [A1] B in [B1] then (60) A D

Explanation:

1. ACAR: every variable will have 20% of its values absent

2. ACAR: each of the variables “A” and “C” will have 30% of its values absent

3. AOD: variable “E” will have 40% of its values absent when variable “C” takes the value “?”, namely
variable “C” is already absent

4. AOD: variable “Income” will have 40% of its values absent when “Age” is between 10 and 20 (inclu-
sive) and “Gender” is “F”.

5. ASOD: variable “Income” will have 40% of its values absent when variable “Gender” has value “F”
and “Income” is between “70000” and “90000”

6. ASOD: variable “A” and “D” will both have 60% of their values absent when variable “A” has value
“A1” and “B” has value “B1”

Figure 5: Examples of absent data specification in the DataZapper script language (above) with the
corresponding English descriptions (below).

4 TECHNICAL DETAILS

4.1 Data Format

DataZapper accepts two data formats: a default format and Weka’s (11) data format—Attribute-
Relation File Format (ARFF).4

The default format is the data format used by the BN learning software CaMML (12), Tetrad (13)
and BNT (14). (We describe how we used DataZapper for the empirical comparison of some of
these methods in Section 5.) An example of complete data in the default format is shown on the
left side in Table 1. The first two lines are the number of variables and the number of observations,
respectively. The next line lists the names of the variables in the dataset. Columns are separated by
tab. Consider again Example 2 in Figure 5 above: “if then (30) A C”, the corresponding corrupted
data after applying dataZapper is given on the right side in Table 1, with the absent values repre-
sented by “?” in the default data format. (The token used to represent absence can be changed from
this default using a runtime parameter.)

DataZapper supports the ARFF format in order to be compatible with the Weka machine learn-
ing platform, which has become a standard toolkit for ML studies (e.g. (11)). In Table 2 we repro-
duce the above example in an ARFF file. Note that an additional attribute for absent values must be
indicated for those variables which are consequents of a DataZapper rule.

4.2 DataZapper Operation

DataZapper processes the absent data specifications one line at a time. In processing each script
command, DataZapper first parses it, validating its syntax against the BNF grammar. It then makes
some values in the complete data absent, using a uniform random variate in comparison with the
specified probability. DataZapper then writes the resultant incomplete dataset to an intermediate

4http://www.cs.waikato.ac.nz/ml/weka/arff.html

5

Table 1: Examples of complete data and corrupted data in DataZapper’s default format.
Complete data Corrupted data
5 5
10000 10000
E A B C D E A B C D
E0 A1 B1 C0 D1 E0 A1 B1 ? D1
E1 A0 B0 C1 D1 E1 A0 B0 C1 D1
E0 A1 B0 C1 D0 E0 A1 B0 C1 D0
E1 A1 B1 C0 D0 E1 ? B1 ? D0
E1 A0 B1 C1 D1 E1 A0 B1 C1 D1
... ...

Table 2: Examples of complete data and corrupted data in ARFF format.
Complete data Corrupted data
5 5
10000 10000
@RELATION input @RELATION input

@ATTRIBUTE E {E0,E1} @ATTRIBUTE E {E0,E1}
@ATTRIBUTE A {A0,A1} @ATTRIBUTE A {A0,A1,?}
@ATTRIBUTE B {B0,B1} @ATTRIBUTE B {B0,B1}
@ATTRIBUTE C {C0,C1} @ATTRIBUTE C {C0,C1,?}
@ATTRIBUTE D {D0,D1} @ATTRIBUTE D {D0,D1}

@DATA @DATA
E0,A1,B1,C0,D1,input E0,A1,B1,?,D1,input
E1,A0,B0,C1,D1,input E1,A0,B0,C1,D1,input
E0,A1,B0,C1,D0,input E0,A1,B0,C1,D0,input
E1,A1,B1,C0,D0,input E1,?,B1,?,D0,input
E1,A0,B1,C1,D1,input E1,A0,B1,C1,D1,input
... ...

file. DataZapper emulates parallelism by generating intermediate output files for each such line
and, in the end, merging the intermediate files into a final output file. In the merging process absent
values dominate; that is, a value ends up missing if it is missing in any intermediate file. DataZapper
finishes by generating a data report on the final dataset, comparing the proportions of absent values
with the original dataset.

We will now look at in more detail of the main functions. The steps with examples will be
presented in the following sections.

Functions included in main():
parser()
corruptedDataGenerator()
mergeData()
dataReport()

function main(script file, complete data)
for each condition line in script file

if parser(condition line, absentInfo5) > 0
corruptedDataGenerator(complete data, corrupted data,

absentInfo, flag)

5An array which stores information about absence

6

dataReport(complete data, corrupted data, &absentInfo, flag)
endif

endfor

mergeData(corrupted data 1, corrupted data 2)
dataReport(complete data, corrupted data, &absentInfo, flag)

end

4.2.1 The parser

The parser function checks the grammar of BNF. It returns 0 for lines which are not proper com-
mands, such as comment line, and move on to the next command, 1 for data ACAR, 2 for data
AOD, 3 for data ASOD, and 4 for mix of data AOD and ASOD. The program exits if there any
error in the command.
Input: a line from script file represent a condition

address of absentInfo passed from main function
Output: value 0 to 4

Functions included:
tokenizer()

function parser(commandLine, &absentInfo)
if the first letter in a line is not a proper start of command

return 0

% Read tokens and save them in an array tokens[].
tokenizer(commandLine, tokens)

% If <condition> is empty, then the data is ACAR.
if <condition> is empty

if absent variable names are not given
% The absence is for all variables
return 1

else
if variable names are valid

store the names
return 1

else
print error message and exit

endif
endif

endif

% If <condition> is not empty, then the data is AOD, ASOD or mix
% of AOD and ASOD.
else

for each dependent variable in <condition>
if the name is valid

if the value/range of the variable is valid
store the names and value/range

else print error message and exit
endif

7

else printf error message and exit
endif

endfor

if the proportion of absence is valid
store the proportion

else print error message and exit
endif

% Check absent variable names
for each absent variable

if the name is valid
save it

else print error message and exit
endif

endfor

% Check absent type and return different value.
if absent type == AOD

return 2
elseif absent type == ASOD

return 3
% mix of AOD and ASOD
else

return 4
endif

end

function tokenizer(commandLine, tokens[]). In general, it separates tokens by space. How-
ever, “[” and “]” are considered as tokens. Tokens between them are separated by “,”. For example,
the last BNF example in Section 3: “if A in [A1] B in [B1] then (60) A D”. The outcome of func-
tion tokenizer() is a list of tokens: A, in, [, A1,], B, in, [, B1,], then, 60, A, D.

4.2.2 The Corrupted Data Generator

This is the key processing step that renders some values in the input data absent. The proportion
of the absence is applied to each selected target variable, evenly distributed over all the relevant
observations for that variable – that is, those observations which satisfy the dependency condition.

Input: complete data
corrupted data filename
address of absentInfo
flag (value 1− 4) from parser()

Output: corrupted data

function corruptedDataGenerator(complete data, corrupted data
filename, absentInfo, flag)

for each record in complete data
get all the values of the variables

8

Table 3: Examples of two corrupted datasets.
corrupted data 1 corrupted data 2
5 5
10000 10000
E A B C D E A B C D
E0 A1 B1 ? D1 E0 ? B1 C0 ?
E1 A0 B0 C1 D1 E1 A0 B0 C1 D1
E0 A1 B0 C1 D0 E0 A1 B0 C1 D0
E1 ? B1 ? D0 E1 ? B1 C0 ?
E1 A0 B1 C1 D1 E1 A0 B1 C1 D1
... ...

% For data ACAR.
if flag == 1

for each value in the record
if the value is for one of the absent variables

generate a random value
if random value < absent proportion

change the value to‘‘?’’
else

keep the value unchanged
endif

else
keep the value unchanged

endif
endfor

% For data AOD, ASOD or mix.
else

for each value in the record
if the value is for one of the absent variables

if the record satisfies the <condition>
generate a random value
if random value < absent proportion

change the value to ‘‘?’’
else

keep the value unchanged
endif

else
keep the value unchanged

endif
endif

endfor
endif
output the record to corrupted data file

endfor
end

4.2.3 Merging Data Files

In this processing step, DataZapper merges multiple corrupted datasets with the same variables
and the same number of observations. The datasets having a common source, the only differences

9

Table 4: Merged data from the examples in Table 3.
corrupted data
5
10000
E A B C D
E0 ? B1 ? ?
E1 A0 B0 C1 D1
E0 A1 B0 C1 D0
E1 ? B1 ? ?
E1 A0 B1 C1 D1
...

Final: 20.00% 12.64% 0.00% 5.14% 30.35%
Original: 0.00% 0.00% 0.00% 0.00% 0.00%

A B C D E

Overall:
 6813 values are absent, 13.63% of all values.
 5201 cases contain absent values, 52.01% of 10,000 total cases.

Content of script file:

Percent of absent values:

 if then (20) E A

 if A in [A1] then (30) B E
 if (C) in [C0] D in [D1] then (20) D

Figure 6: Example of DataZapper’s absent data report.
between them are those required by processing distinct script file commands. The merged data is a
kind of union of the corrupted datasets, with the absence of a value in any cell forcing its absence in
the final output. If there are many script commands being executed, or if the initial input file itself
contained incomplete data, then the final dataset may contain less information (more absent values)
than anticipated.

For example, consider again Examples 2 and 6 from Figure 5 for specifying absent data. Table
3 displays some examples from the two corrupted datasets respectively, while Table 4 shows the
same examples in the final merged corrupted dataset.

4.2.4 Data report

DataZapper presents a statistical summary of the incompleteness of the final dataset. Figure 6 gives
an example data report. This report can be used to fine tune the scripting rules in the event that
the overall sparseness of the data is unexpectedly high, possibly due to the cumulative effect of
multiple rules on some variables.

5 APPLICATION

We now describe an application of DataZapper in generating incomplete data for use in some of our
machine learning research. The specific application is an empirical comparison of the performance
of causal discovery algorithms in finding the causal Bayesian network (a kind of directed acyclic
graph, or DAG) which has generated some observational data. The algorithms under test were
K2 (15), GES (Greedy Equivalence Search) (16), and the PC algorithm from Tetrad (13). The first

10

10 30 50 70 90

40 6020 80
Dependence

ACAR
AUD

AUSD

Absent Mechanism

PC

GES

K2

Algorithm

Figure 7: Three dimensional experimental design.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

90 percent

80 percent

70 percent

60 percent

50 percent

40 percent

30 percent

20 percent

10 percent

complete

av
er

ag
e

ed
it

di
st

an
ce

 (5
0

se
ts

 o
f 1

00
0

ob
se

rv
at

io
n)

degree of absent dependence

Compare algorithms on data AOD with mode imputation

K2
PCn
PCf

GESn
GESf

Figure 8: Example experimental results using DataZapper: comparison of 3 causal discovery algo-
rithms, on data generate with AOD absence mechanism, varying the degree of data completeness.
algorithm, K2, returns a single DAG which fits the data best.6 The other two algorithms return
an equivalence class of DAGs (a pattern); that is, a set of DAGs which all have equal maximum-
likelihood scores based upon any given set of observational data (18). In effect, these algorithms are
asserting that all the DAGs within the pattern are equally likely to be the source of the observed data.
In assessing such results, therefore, we use a pattern-to-DAG conversion algorithm (19) algorithm
which returns two DAGs: that nearest to the original causal Bayesian network in structure (as
measured in edit distance) and that farthest from the original network. This provides a range of
performance for assessing such algorithms (assuming that the data are artificial, of course, since
otherwise the original network is unknown).

The experiment we ran was a three dimensional evaluation: we varied the algorithm, the pro-
portion of absence and the absent data mechanism as shown in Figure 7.

We used 50 sets of complete data generated from a known Bayesian network. We then applied
DataZapper to produce 3 × 9 incomplete datasets for each complete dataset, given the three ab-
sence mechanisms and 9 steps of proportion of absence, as shown in Figure 7. We then designed
comparison experiments for different combinations of these experimental parameters.

For example, one experiment involved selecting the absence mechanism and then comparing
the performance of the causal discovery algorithms given varying proportion of absence. The results

6We have supplemented K2 by utilizing a Minimum Weighted Spanning Tree algorithm of (17) as a preprocessing
step to produce the total ordering of variables that K2 demands.

11

of this particular experiment are shown in Figure 8. Here the evaluation measure we used is the edit
distance of the learned BN to the true model—Figure 1, averaged over the 50 datasets. For the PC
and the GES algorithms we report two results, one based on the DAG within the pattern returned
that is nearest to the true model (PCn and GESn), another for the DAG within the pattern that
is farthest from the true model (PCf and GESf). In this experiment we used one of the simplest
methods for handling absent values, namely modal imputation (i.e., replacing each absence token
with the modal value for that variable). Results are available for all ACAR, AOD and ASOD. Only
AOD is used as an example. Figure 8 shows that under these circumstances the performances for
PC and GES improve as the data quality improves, while K2 appears to be stuck. Overall, GESn
shows the best performance.

6 CONCLUSION

DataZapper is a powerful and flexible tool for incomplete data generation, developed specifically
for use in research comparing machine learning algorithms. DataZapper allows researchers to spec-
ify both the amount of absent data and the nature of the dependencies in generating the absent data,
using simple conditional rules. Multiple conditions of absence can be described for each variable
and for multiple variables, which will be applied cumulatively by DataZapper to the input dataset,
which itself may be either complete or already corrupt. DataZapper is the only tool which can gen-
erate incomplete data for all types of absent data mechanisms (ACAR, AOD or ASOD) and with
any degree of dependence. We offer it through Weka in the hopes that methods of coping with more
interesting and difficult varieties of incomplete data may be investigated by the machine learning
community.

References

[1] Onisko, A., Druzdzel, M.J., Wasyluk, H.: An experimental comparison of methods for han-
dling incomplete data in learning parameters of bayesian networks. In: Proceedings of the
IIS’2002 Symposium on Intelligent Information Systems, Physica-Verlag (2002) 351–360

[2] Twala, B., Cartwright, M., Shepperd, M.J.: Comparison of various methods for handling
incomplete data in software engineering databases. In: 2005 International Symposium on
Empirical Software Engineering, Noosa Heads, Australia (November 2005) 105–114

[3] Twala, B.E.T.H., Jones, M.C., Hand, D.J.: Good methods for coping with missing data in
decision trees. Pattern Recogn. Lett. 29(7) (2008) 950–956

[4] Rubin, D.B.: Inference and missing data. Biometrika 63(3) (Dec. 1976) 581–592

[5] Ghahramani, Z., Jordan, M.I.: Learning from incomplete data. Technical Report AIM-1509,
Artificial Intelligence laboraory and Center for Biological and Computational Learning, De-
partment of Brain and Cognitive Sciences, Massachusetts Institute of Technology (1994)

[6] Gill, M.K., Asefa, T., Kaheil, Y., McKee, M.: Effect of missing data on performance of learn-
ing algorithms for hydrologic predictions: Implications to an imputation technique. Water
Resources Research 43(W07416,) (2007)

[7] Richman, M.B., Trafalis, T.B., Adrianto, I.: Multiple imputation through machine learning
algorithms. In: Artificial Intelligence and Climate Applications (Joint between 5th Conference
on Applications of Artificial Intelligence in the Environmental Sciences and 19th Conference
on Climate Variability and Change). (January 2007)

[8] Francois, O., Leray, P.: Generation of incomplete test-data using bayesian networks. In:
Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA
(2007) 12–17

12

[9] Backus, J., Naur, P.: Revised report on the algorithmic language algol 60. Communications
of the ACM 3(5) (May 1960) 299–314

[10] Wen, Y., Korb, K.B., Nicholson, A.E.: Datazapper: Generating incomplete datasets. In: Pro-
ceedings of the First International Conference on Agents and Artificial Intelligence (ICAART
2009). (2009) 69–76

[11] Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. 2 edn. Morgan Kaufmann, San Francisco, CA, USA (2005)

[12] Wallace, C., Korb, K.B., Dai, H.: Causal discovery via MML. In: Proceedings of the Thir-
teenth International Conference on Machine Learning, Morgan Kaufmann (1996) 516–524

[13] Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. 2 edn. Cambridge,
MA:MIT Press (2000)

[14] Leray, P., Francois, O.: BNT structure learning package: documentation and experiment s.
Technical Report Laboratoire PSI - INSA Rouen-FRE CNRS 2645, Universit et INSA de
Rouen (2004)

[15] Cooper, G.F., Herskovits, E.: A Bayesian method for constructing Bayesian belief networks
from databases. In: In Proceedings of the Conference on Uncertainty in AI, San Mateo, CA:
Morgan Kaufmann (1991) 86–94

[16] Meek, C.: Graphical Models: Selecting Causal and Statistical Models. PhD thesis, Carnegie
Mellon University (1997)

[17] Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory 14 (1968) 462–467

[18] Chickering, D.M.: A tranformational characterization of equivalent Bayesian network struc-
tures. In Besnard, P., Hanks, S., eds.: UAI95, San Francisco (1995) 87–98

[19] Wen, Y., Korb, K.B.: A heuristic algorithm for pattern-to-dag conversion. In: Proceedings
of IASTED International Conference on Artificial Intelligence and Applications. (2007) 428–
433

13

	Introduction
	Absent data mechanisms
	Scripting DataZapper
	Technical details
	Data Format
	DataZapper Operation
	The parser
	The Corrupted Data Generator
	Merging Data Files
	Data report

	Application
	Conclusion

