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Abstract

The construction of Bayesian Networks (BNs) to model large-scale real-life problems is challenging. One approach to scaling
up is Object Oriented Bayesian Networks (OOBNs). These provide modellers with the ability to define classes and construct
models with a compositional and hierarchical structure, enabling reuse and supporting maintenance. In the OO programming
paradigm, a key concept is inheritance, the ability to derive attributes and behavior from pre-existing classes, which enables an
even higher level of reusability and scalability. However, inheritance in OOBNs has yet to be fully defined and implemented. Here
we present iOOBN, a tool which provides fully defined inheritance for OOBNs. We provide guidance on modelling in iOOBN,
describe our prototype implementation with an existing BN software tool, Hugin, and demonstrate its applicability and usefulness
via a case study of re-engineering an existing large complex dynamic OOBN.
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The iOOBN framework: technical details

I. INTRODUCTION

In real-world applications the ability to reason under un-
certainty is critical for making decisions. Bayesian decision
networks (BNs) [30], [15] are a powerful tool for performing
and supporting many forms of uncertain reasoning, including
monitoring, prediction, diagnosis, risk assessment and decision
support. Their usefulness as a mature modelling technology is
demonstrated by the extremely wide range of areas to which
they have been applied, including (with single examples only,
for reasons of space): medicine [9], education [10], agriculture
[22], ecology and environmental management [2], biosecurity
[3], surveillence [28], miliary [11], weather forecasting [6] and
software engineering [33].

Bayesian decision networks can be built “by-hand” using
elicitation methods to capture expert knowledge, from models
in the literature, by automated learning if data is available,
or by combinations of these. Particularly when much or all
of the model is built by-hand, as the complexity of problem
increases, BN modelling methods struggle to scale up. The
resultant large complex BNs are difficult to visualise and hard
for the domain experts and decision makers to understand,
reducing the acceptance and subsequent use of the model.

From the late 1990s, researchers started to develop theories
and techniques to scale-up BN modelling. These included
versions of well-known techniques for handling complexity,
such as dividing the problem into subparts and then combining
the BN models for the subproblems, and re-using BN model
previously built and validated for another application. These
techniques include object-oriented BNs (OOBNs) [20], [5],
PRM [18], OOPRM [34], generalised decision-graphs [29],
BN fragments [25], varieties combining probabilistic rela-
tional models and objects, such as module networks [32],
probabilistic relational models and plate models [14], multi-
entity BNs (MEBNs) [24], idioms [12], and template-based
representations [19].

OOBNs are inspired by object oriented principles from
software engineering (e.g. [7]), where sub-parts of the overall
model are represented in classes, which contained both nodes
and objects, which are instances of other classes, giving
a composite and hierarchical structure; these key concepts
were first introduced by Koller and Pfeffer [20]. Connections
between objects is strictly limited to define input and output
interface nodes, providing the OO concepts of encapsulation,
abstraction and information hiding. Thus a modeller may
embed an object in the larger model without knowing about
its details, and the decision maker can view all or parts of the
model at different levels of abstraction, aiding understanding
and acceptance. The use of classes also supports maintenance
of the models, as a change (e.g. updating the model parameters
when new data becomes available) need only be made once,
in the class, and the change is automatically propagated to
all the objects of that class, in any number of OOBNs. Other

advantages of OOBNs include: supporting the building of large
OOBNs in parallel by multiple modellers, who only need to
agree on the class interfaces; provide modularity which limits
the scope of changes and reduces the chance of a model change
introducing errors; facilitating the design of both temporal1

and spatial models.
The power and efficacy of OOBNs have been demonstrated

in their application across a similar range of application do-
mains as BNs including medicine, environmental management,
agriculture, reliability engineering and mechatronics (see [21],
Ch5). However, despite their advantages, OOBNs comprise
only a small proportion of all BNs. Possible explanations for
this include: that their modelling overhead is not justified for
smaller, simpler and one-off models; they are not supported in
most BN software packages; there are no modelling guidelines
or knowledge engineering methodologies for OOBNs.2. They
also have the major limitation that the key OO concept of
inheritance has not been fully defined and implemented in any
existing BN software tool.

In the OO paradigm, inheritance is the ability to derive at-
tributes and behavior from pre-existing classes, which enables
a greater level of reusability and scalability. In current OOBN
modelling, every new class is a separate entity, regardless of
its similarities to existing classes. Incorporating inheritance
into an OOBN framework means allowing classes to be
“extended”, with new classes – called sub-classes – to be
defined in terms of “inheriting” certain elements from the
original class, along with the differences. This should allow
the re-use of already constructed network segments, as well
as supporting maintenance.

The original description of OOBNs [20] did not provide
for the expressiveness of dynamic object construction and
changing, and was not implemented by the authors. The first
implementation of OOBNs was in the 2003 version of Hugin
[26], a widely used and (with Netica) the longest-established
commercial BN software tool, but still does not include
any implementation of inheritance. The OOBN framework
presented in [5] did provide a limited form of inheritance (only
allowing a subclass to change the interface and the hidden
structure).

Probabilistic relational models (PRM) [18] are an alternative
to OOBNs that arose in the early 2000s inspired by relational
database theory, relational algebra and relational logic pro-
gramming. To provide full access to the class components
in order to facilitates modellers to model large and complex
Bayesian network applications, PRM contains reference slots
to establish relations among classes. However, these reference
slots violate the encapsulation and data hiding mechanism of
the OO paradigm and hence introduces challenges in decom-
posing large applications that are developed across a group of

1Hugin implements dynamic Bayesian networks, used for explicit rea-
soning over time, using OOBNs

2Unlike for BNs, where guidelines and methodologies include [8], [27]



3

modellers. While the original PRM did not include inheritance,
OOPRM [34] extends the PRM framework by introducing OO
concepts such as inverse reference slot, interfaces, inheritance
and polymorphism. OOPRM has the same issues as PRM
with reference slots, while inverse reference slots also violate
encapsulation, and it is less flexible to extension, modification,
decoupling, and decomposition. Moreover, in OOPRM, the
reference slot chains and inverse reference slot chains make
modification and re-use far more complex, as the modeller
needs to consider how a class is embedded in the whole
system, when making even a simple modification to a single
class. In addition, while they allow compact representation
of relationships between classes that will be instantiated with
multiple objects, they do not provide the utility and decision
nodes that allow BNs (and OOBNs) to be used for decision
making. Finally, while OOPRM has been implemented in
research software [13], it is not available in any commerical
modelling tool, and there seem to be few real-world OOPRM
models described in the literature.

The original formulation of OOBNs is free from all above
mentioned limitations and has been most widely used in
practice, due to its implementation in Hugin. In this paper, we
present a tool, which we call iOOBN, which extends the Hugin
OOBN implementation with a full treatments of inheritance
and its associated OO concepts, namely object formation,
instantiation, polymorphism, dynamic maintenance, and type
checking.

The rest of the paper is organised as follows. In Section II,
we present iOOBN, a tool with a full treatment of inheritance
in OOBNs. In Section III we provide guidance (although not
yet a full methodology) for knowledge engineering models
within the iOOBN framework, and describe our implementa-
tion of a prototype of the iOOBN framework in Section IV.
While in this paper we deal only with discrete variables,
the framework can be extended to continuous variables in a
straightforward way. In Section V, we re-engineer an existing
real-world, complex, dynamic OOBN (for an ecological man-
agement response model) into the iOOBN framework, demon-
strating the applicability, usefulness and power of iOOBNs.
Finally, in Section VI we conclude with some ongoing and
future research directions.

II. THE IOOBN TOOL

Here we describe all the iOOBN components to provide
proper treatment of all the features of OO paradigm, especially
inheritance. We extend the definition of OOBNs used in [17]
and [21], and implemented in Hugin BN, also following
that terminology and notation. We assume standard Bayesian
decision network definitions of chance nodes (representing
random variables), decision nodes and utility nodes, directed
arcs, conditional probability tables (CPTs), and utility tables.

A. Basic Components

An iOOBN class consists of nodes, objects which are
instances of classes, and edges. There are two types of classes,
abstract and concrete. Concrete classes are fully parameterised
and thus can be ‘flattened’ into a standard Bayesian decision

network and compiled; these correspond to classes as defined
in previous formulisations of OOBN. In contrast, abstract
classes are not fully parameterised, i.e. do not have fully
specifed CPTs and/or utility tables, and therefore cannot be
compiled, i.e. cannot be used for reasoning.

As for standard Bayesian decision networks, all the nodes
in an iOOBN class have a name and are either chance
nodes, decision nodes or utility nodes. Chance nodes represent
random variables. They have a set of states, a CPT, and are
represented by an oval shape. Decision nodes represent the
possible actions that a decision maker must choose between.
They have a set of actions and are represented by a rectangular
shape. The final type of node is the utility node, which has
an associated utility table (representing a utility function over
its parent chance and decision nodes) and is represented by a
diamond shape.

In an iOOBN class (as in standard OOBNs) there are four
types of edges or links: ordinary, information, precedence, and
referential links. Ordinary links are the standard edges in a
Bayesian decision network, represented by a single solid-line
arrow; they can be from a chance node to a chance node, from
a chance node to a utility node, or from a decision node to a
utility node. An information link is represented by a dotted line
arrow and is from a chance node to a decision node; it indicates
when a chance node must be observed before a decision
is made. A precedence link is also represented by a dotted
line arrow and is from a decision node to a decision node;
it represents the sequence order between decisions. Finally,
referential links are used to connect nodes to nodes within
objects and are represented by double dotted lines. For two
nodes to be linked by a referential link, they must be either
both chance nodes with the same states, or both decision nodes
with the same actions. When an iOOBN is flattened into a BN,
nodes that are joined by referential links are represented by a
single node. The edges within an iOOBN must be such that it
will flatten out to a valid BN, that is, directed, acyclic graph.

Classes (and hence objects) in iOOBN (as in standard
OOBNs) have three types of nodes: input, output and em-
bedded nodes. The input and output nodes of a class, called
its interface, can be either chance nodes or decision nodes,
while the embedded nodes of a class can be either chance
nodes, decision nodes or utility nodes. A class can also contain
objects, instances of other classes. An object is connected to
a node in the class in which it sits (called its encapsulating
class), if there is a referential link between the node and an
input node in the object’s interface. A node in the interface can
only have one referential link to a node outside the object. In
addition, there may be ordinary links from an object’s output
nodes to embedded or output nodes outside the object. If an
input node of an embedded object (of a concrete class) is not
connected via referential link, it must have a default CPT (as
per [15]); if connected via a referential link, the CPT of the
connected node overrides the default CPT.

We denote an input node with a dotted circle, output node
with a double-lined circle, embedded chance, decision and
utility nodes with shaded circles, shaded rectangles and shaded
diamonds, respectively. For textual distinction of input, output
and embedded basic nodes, we have used italic, bold face
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Fig. 1. Example interface and class hierarchy for the OMD livestock example [iOOBN framework components and polymorphism].

and underlined font, respectively. To describe objects, we have
used underlined-italic font.

In addition to concrete and abstract classes, iOOBN also
includes an interface as a separate data structure, containing
only input and output nodes, without any parameters (i.e. these
nodes have empty CPTs). For every abstract or concrete class,
there is always exactly one associated interface (though the
modeller might not choose to explicitly use it). An interface
acts as a placeholder in the enscapulating class during the
model design process, allowing the model builder to use sub-
models built previously, or being built simultaineously by
other modellers, without having to understand the inner details
of that sub-model. Hence, when building a large, complex
iOOBN, the modellers need only to agree on the mutual
interfaces of classes beforehand and can combine their works
later. The aim of the model building process is to produce
a fully specified iOOBN, that is an object (instance) of the
top level class that can be compiled and run. At some stages
during that process, all interfaces and abstract classes must be
replaced by an object, an instance of a concrete class, having
the same interface nodes.

The specification of abstract classes, and interfaces, which
provide the OO features of abstraction, encapsulation and
generalization, are key components of iOOBN that differ
from previous OOBN formulations. Limiting the connections
between classes to the interface nodes provides encapsulation,
a way to deny unauthorized access to the information and

structure of the encapsulated sub-models. We note however
that the information hiding within an iOOBN is not “pure”;
evidence can be entered for any chance node in the iOOBN,
however deeply it is embedded, and the posteriors (for chance
nodes) and expected utilities (for decision nodes) computed
by the inference algorithm are available as the iOOBN model
“outputs”.3

For illustration purposes, we use the livestock farming
of the Old McDonald (OMD) [23] example with necessary
extensions. In OMD, the farm owner has several types of
cows (“milk”, “meat”, “drafting”, “calving”), augmented with
decision and utility nodes to model farming decisions based
on profit making. Fig. 1 (slot-1 and slot-2) shows a UML-
type representation of the OMD hierarchy in iOOBN. Here
we describe the basic components in this iOOBN example; in
the following section we will describe the class and interface
hierachy elements of the example.

Consider the concrete Calving Cow class in Fig. 1 (2nd
slot, bottom): it has five input nodes (Food, Locale, Sex,
Health and Breed), two embedded nodes (Metabolism and
Reproduction), an embedded object Productivity, which is an
instance of the Productivity class, and three output nodes
(Meat, Milk and Calves). There are referential links (undi-
rected double dotted lines) from three of those input nodes

3This is analogous to I/O in OO programming, which can occur in any
object in the overall software.
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(Food, Locale and Breed) to the input nodes of the Produc-
tivity object, and a single ordinary link (solid line) from the
embedded object (the output Productivity node, not shown)
to the embedded Reproduction node. Because it is a concrete
class, all the CPTs must be fully specified (although this is not
shown in the figure for reasons of space). The abstract Calving
Cow class has the same input and output nodes as the concrete
Calving Cow class; it has a different internal structure – this
will be explained below. There is also an interface Calving
Cow class (1st slot), connected via a dotted line with open
arrowhead going from the abstract class to its corresponding
interface class (following standard OO UML notation).

B. Inheritance and polymorphism

Inspired by the OO principle of inheritance, in iOOBN both
classes and interfaces, denoted sub-types, can inherit structure
and parameters (analagous to inheriting attributes and/or be-
haviors in OO programming) from another entity (class or
interface, respectively), denoted the super-type. A sub-type
entity is a variation, usually thought of as a specialisation,
that includes changes to structure and/or parameters.

We define a sub-interface as inheriting all the input and
output nodes from its super-interface, and which may have
any number of additional input or output nodes. Similarly,
a sub-class inherits all the input and output nodes from its
super-class, and may have any number of additional input or
output nodes. The sub-class inherits all of the internal structure
of the super-class (embedded nodes and objects), and may
also contain additional nodes and links. The interface nodes
of the sub-class are then a superset of those of the super-class.
Because all input nodes in concrete classes must have default
CPTs specified, there is no problem replacing an object of a
super-class with a sub-class. The inheritance relationship is
denoted with a solid line with open arrow directed into the
super-class, following standard UML inheritance notation.

Consider again the OMD example in Fig. 1. The highest
level class is the abstract Meat Cow class (2nd slot, top),
because all cows in this farm example can be used for meat
production. The Meat Cow class in turn has two (abstract) sub-
classes (Meat Cow and Drafting Cow). Both these sub-classes
inherit the Meat Cow super-classes input nodes (Food and
Locale) and output node (Meat), but have additional interface
nodes (Sex and Milk for Milk Cow class, Castration and Draft
for Drafting Cow). Drafting Cow has an additional interface
node, Strength, an important attribute for a drafting cow, as
well as an additional output node (Draft). Similarly, we can
see that the previously described Calving Cow abstract class
is a sub-class of Milk Cow, and has a more complex structure:
two new input nodes (Health and Breed) and additional output
node (Calves) and different internal structure around the new
embedded node Reproduction. We can see that the concrete
Calving Cow is itself a sub-class of the abstract Calving
Cow class, with exactly the same interface nodes, but with
a different internal and more complex structure, specifically
around an additional embedded object Productivity. Similarly,
there is an inheritance hierarchy between the interfaces Meat
Cow, Milk Cow and Calving Cow, with same solid line

Class {abs}

Meat CowFood Locale

Meat

Metabolism

Class: 

Braford Cow
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Metabolism Food Loc
P(Meta =T |
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Food Loc
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Food, Loc )

Low
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Class:

Brangus Cow
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Neg 0.02

Pos 0.03

Neg 0.04
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Fig. 2. Changing CPTs of inherited nodes in the sub-classes

with open arrow notation; naturally, these correspond to the
different interfaces found in the class hierarchy.

A crucial aspect of OO inheritance, which must apply here
in iOOBN as well, is that the classes remain “backward”
compatible; this means that an encapsulated object can be
replaced by an object of any sub-type (direct, or via the
hierarchy) and the resultant iOOBN is still a valid iOOBN
– nothing “breaks”, and when made fully concrete, can be
compiled and run (i.e. used for reasoning). This gives iOOBN
another prominent feature of the OO paradigm, namely “Poly-
morphism”, which allows an object to take many forms if
and when required. Unlike OO programming, this replacement
of an object by another that is a sub-type, cannot be done
at runtime; rather, it must be done during the modelling
process. We can simply model this special case as a set
of classes that differ only in their embedded objects, as a
hierarchy of classes, as for example depicted in Fig. 1 (slot-
3), where the FarmProfit milkCow Inf super-class contains
an embedded interface object (Milk Cow interface), its sub-
class FarmProfit milkCow Abs contains an embedded object
of the corresponding Milk Cow abstract class, and in turn
the FarmProfit calvingCow Abs sub-class (derived from the
class FarmProfit milkCow Abs) contains an embedded object
of the abstract sub-class Calving Cow.4

There are further analogies we can make with OO program-
ming. Where an iOOBN sub-class inherits certain elements
from its super-class, any changes to those elements, such as
changes in the domain or type of node(s), are a form of
overriding. iOOBN is a strongly typed framework where each
entity has an associated type, which allows us to perform
type checking to ensure that the types of interface nodes
are preserved in the sub-class. Moreover, when a super-class
object can be replaced by an object of its sub-class, then this
is a form of type casting.

4Note that we have considered adding an additional element to iOOBN,
namely to have “variants” of a class which differ only in the embedded object
and all the rest of the class remains the same (including the referential links
to the encapsulated object). This feature would be utilised in applications
where a script is used to generate different versions of the model for different
purposes (as in the WGR case study described in Section V), allowing a
form of runtime binding. However this remains a possible future extension to
iOOBN.
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Fig. 3. Adding links and nodes within sub-classes

III. MODELLING WITHIN THE IOOBN FRAMEWORK

The BN modelling process, in practice, is usually iterative
and incremental, e.g., [25], [21], particularly when building a
model partially or completely “by hand”, rather than learning
from data. So the modelling process can be seen as a sequence
of changes to the BN: adding or deleting nodes or edges,
changing the name or states of a node, changing some or all
of a CPT, and so on. Also, some of these changes necessarily
generate others; for example, adding a new state to a node
means changing the CPT of both the node itself, and also the
CPTs of any child nodes.

When building an OOBN, as well as the ordinary BN mod-
elling changes, there are additional possibilities for modelling
steps, such as: embed an object within a class, create a new
class, change the referential links to an embedded object, and
so on. When modelling with ordinary OOBNs, as implemented
in Hugin, if the modeller wants to create a new class that has
common elements with an existing class - for example, if s/he
had created a Meat Cow class, and wanted to make new Milk
Cow, this would involve copying the Meat Cow class, giving
it a new name, then making changes in the new Milk Cow
class itself. When modelling complex problems, the number
of classes can grow quite large (as we see in our case study in
Section V), making it difficult for the modeller to keep track of
the differences and similarities of the various new classes and
increasing the chance of inadvertent errors and inconsistencies.
In addition, if at any point the modeller wants to change some
part of the model that is common to more than one class
the modeller often needs to make the same change in more
than one class. For example, in ordinary OOBN modelling,
changing the state space of the Locale node in the Meat Cow
node would suggest the same change should be made in the
Milk Cow class (and any others).5

Inheritance provides an approach for solving these issues.
Using inheritance we can record the connection between the

5Of course ordinary OOBN still provide an efficiency in that a change to
a class will be pushed out to any object created from that class. In constrast,
when using sub-networks in the GeNIe software [1], the modeller can make
copies of the same network fragment, but to make a change in that fragment,
s/he has to change it in all sub-network copies, a tedious process.

Input’

O/E 1 O/E 2 O/E 3

Input

Input

O/E 1 O/E 2 O/E 3

I/E 1 I/E 2

Output’

I/E 3

Output

I/E 1 I/E 2

Output

I/E 3

Class C
Subclass C’

Class C Subclass C’

Fig. 4. Schematic diagram showing the model change required to effect a
change in the states of an input (above) or output (below) nodes.

variations of a class, and allows a change in one class to
flow through to other relevant classes. Thus, using the iOOBN
framework, the modelling steps are: to create a new sub-class
(e.g. Meat Cow); give it a new name (e.g. Milk Cow); then
make a sequence of changes to the new sub-class itself. The
iOOBN system must then first check that any given change is
valid, and then keep track of those changes. Thus the sub-class
is internally represented by what it inherits from its parent,
i.e., where it is identical, and then by the set of changes that
override elements of the parent class.

The simplest form of sub-class is one where only the
parameters of the sub-class are changed and all structural
elements remain the same; Fig. 2 gives an example of this
case, with two sub-classes of the Meat Cow class created to
represent two different species of cows, where the CPT of the
Metabolism node has been changed from the parent Meat Cow
class, to represent the different metabolic rates of Bradford
and Brangus cows. Note that the figure shows the resultant
new CPT, not the internal representation of the inherited CPT
plus changed elements.

Any kind of nodes – input, output and embedded – can be
added to a sub-class. This would normally involve the addition
of edges, otherwise the change will result in the degenerate
case having a disconnected node. Embedded nodes can be
deleted, but the definition of inheritance – where the interface
of a class and sub-class must be identifical – forbids the
deletion of input or output nodes. However, if an input node is
not relevant in the sub-class, it is possible to delete the links
from an input node to its children, disconnecting it from the
rest of the structure.

Fig. 3 illustrates an example where the sub-class has in-
volved the creation of new nodes as well as edges, to model
the reproduction process in our OMD example.

Another modelling step the iOOBN system must handle is
a change in the states of a node. The first case for this is a
change to the states for an embedded node in a class; this
is straightforward and handled in exactly the same way as a
change the CPT of a node.
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Class{abs} 

Meat CowFood Locale

Meat

Metabolism

Class:

 Brangus
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Food Locale

Meat

Metabolism

Meat’

Locale’ Loc
P(Loc' =Fav |

Loc )
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Loc )
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0.81

0.30

Food Loc
P(Meta =True | 

Food, Loc )
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0.3
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P(Meat'=High|

Food, Met)
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Low Neut 0.40
Low Harsh 0.35
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0.15
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Fig. 5. Type Casting: Type Changing of inherited Input-Output Nodes in
sub-classes

Input: Class C
Output: Subclass C ′

Create the subclass C ′

Add a new node I ′ that has the new set of states
Add a link from I to I ′

foreach link e from I to its children (child) in C do
Remove e
Add a new link from I ′ to child
Update CPT of child

end
Construct a CPT for I ′

return subclass C ′

Algorithm 1: Modelling steps when adding states to an
input node

A second and more interesting case is when the desired
change is either to the states of an input node, or to the states of
an output node of a class, C. By definition, this is not allowed,
as the interface of a class and its sub-class must be the same.
However we can make the desired change by modifying the
non-interface structure of the class; adding a duplicate node
with the different type and connecting it to the interface node,
leaving the interface unchanged. Thus, the algorithm for the
modelling steps to in effect change the type of an input node I,
without changing the actual interface, is shown in Algorithm
1 while the steps to change the type of an output node, O in
a class C are shown in Algorithm 2.

Fig. 4 gives a schematic representation of the changes
effected by Algorithms 1 and 2. Since in the input node
case, its children can be either embedded or output nodes, we
combine our notation (shading plus bolded outline) for these
child nodes, while for the output node case, its parents can be
either embedded or input nodes, we combine the shadded and
dotted outline notations for these parent nodes.

In Figure 5, we provide an example of this state change,
when the states {“Pos”, “Neg”} for the node Locale, are
changed to {“Fav”, “Neut”, “Harsh”}, and the states {“Good”,
“Bad”} for the node Meat are changed to {“High”, “Avg”,
“Low”}.

Input: Class C
Output: Subclass C ′

Create the subclass C ′

Add a new node O′ that has the new set of states
Add a link from O′ to O
foreach link e to O from its parents (parent) in C do

Remove e
Add a new link from parent to O′

Create the CPT for O′
end
Construct a CPT for O
return subclass C ′

Algorithm 2: Modelling steps when adding states to an
output node

As these examples show, there are many possible changes
that can be made when creating a new sub-class, and it will be
both domain dependent and at the discretion of the modeller,
as to how many changes to make in a single inheritence step.
There will also be decisions to be made about whether to create
multiple levels of subclasses, or to create a single level with
multiple sub-classes. We expect that in some cases, an iOOBN
class hierachy created incrementally might well be suboptimal
and that regular re-engineering might be beneficial; however
that is certainly an area for future investigation, after we have
more experience in modelling within iOOBN.

IV. PROTOTYPE IMPLEMENTATION

We have developed a prototype iOOBN implementation
using the Java programming language and the Hugin BN
software API [16]. This prototype is based on a newly defined
language NET++, an extended version of NET used in Hugin,
which converts the iOOBN definitions of nodes, edges, classes
(abstract and concrete) and interfaces to equivalent NET
language in the HUGIN OOBN definition. The HUGIN engine
is then used to perform all the standard belief updating and
other Bayesian decision network operations.

A. Mechanisms to carrying and propagating/ maintaining
changes

1) Steps of processing in iOOBN framework: Modellers can
design BN systems in iOOBN with inheritance facility which
reduces effort of making new classes from scratch. Actually,
the OO facilities (specially inheritance) allow the modellers to
create new classes from existing classes.

2) Creating new classes/interfaces/hierarchies: In the hier-
archy shown in the figure, the interface “MeatCow is the root
component and needs to be modelled from scratch. However,
the interfaces “MilkCow and “DraftingCow can be created
by extending (copying the nodes from another interface and
adding additional nodes) “MeatCow.

Similarly, the abstract class “MeatCow can be created by
implementing (copying all input, output nodes and adding ad-
ditional embedded nodes with required edges in) the interface
“MeatCow.

Furthermore, to create abstract classes “MilkCow and
“DraftingCow we can extend (copying whole structure i.e. the
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Fig. 6. Steps of processing iOOBN framework

nodes-edges and adding additional required edges, or nodes
and edges in) the abstract class “MeatCow.

Hence, there are two special operations (1) Extend (2)
Implement. We can add super() to use particular elements of
a parent class/interface to create new ones.

3) Generating intermediate classes: We generate HUGIN
OOBN classes for each of the concrete iOOBN classes.
The iOOBN concrete classes implement several interfaces
and extends at most one abstract or concrete iOOBN class,
where the interfaces and classes might recursively extend or
implement other classes or interfaces, respectively.

Hence, to generate a meaningful HUGIN OOBN class,
we start from the top of the hierarchy (generated by a post
analysis of the generated iOOBN interfaces, abstract classes
and concrete classes). Then a BFS (Breadth First Search)
strategy is followed to generate HUGIN OOBN classes level-
by-level from the hierarchy tree.

B. Local stand-alone system

1) Current version (single phase compilation): The steps
described above (modelling in IOOBN and generating HUGIN
OOBN classes) are followed in the current pilot version i.e.
Local stand-alone system.

2) Propagation/maintenance of changes in the hierarchy:
The biggest problem of this system is, it requires changing
from top to bottom of the whole hierarchy tree in a model
each time we compile a model built in IOOBN.

3) Efficient version (Only recompiling changed classes):
Keeping track of the classes that require changes and locating
them in the hierarchy. Then marking all classes those reside
in the branches leading from that particular location down to
the bottom level.

This will save huge computational effort and unnecessary
conversion in the intermediate class generation process.

4) More efficient version (Two phase compilation): Intro-
ducing hierarchical, incremental and shareable compilation
techniques with minimal updating required.

5) Re-engineering WGR (Western Grassland Reserve)
project: As a proof-of-concept case study, we re-engineered an

existing real-world dynamic OOBN model i.e. WGR, imple-
mented in Hugin, into the IOOBN framework. This model was
developed as an environmental decision support tool for the so-
called Western Grassland Reserve Project, modelling grassland
species composition and how this might change under different
management regimes.

C. iOOBN: documentation and workflow diagram

1) The data structure “Meta-Node Table: A Meta-Node
Table (analogous to symbol table of compiler theory) is created
which is a mapping between constructs (interfaces, abstract
classes and concrete classes) name and their corresponding
meta-node representation.

This table is used by loader-linker of iOOBN system to
generate intermediate HUGIN OOBN codes.

2) The data structure “Meta-Node Tree and Forest: A list
of meta-nodes is connected based on their dependency in
a (imaginary) tree format. The dependencies are defined by
the inheritance mechanism used in defining classes, abstract
classes and interfaces as shown in the first figure.

There can be more than one tree i.e. a list of tree represent-
ing a particular model i.e. a forest (a non-empty list of trees)
representing the hierarchical relations among the interfaces,
classes (abstract/concrete).

This tree and forest is a handy tool for propagat-
ing the update/changes from parent meta-nodes to child
meta-nodes. In particular, if a modeller changes definition
of any class/interface which has been inherited by other
classes/interfaces, then the changes needs to be reflected in
the inheriting constructs. These trees and forest are the best
optimized tool (so far I know) to pushing the changes from
parents to children and so on.

3) Link between “Meta-Node Table and “Meta-Node
Tree/Forest: While creating an iOOBN interface or class
(abstract/concrete) straight forwardly i.e. without extending
any class or implementing any interface, generating HUGIN
OOBN class is quite simple or effortless.

However, if any class/interface inherits other interfaces or
class then we immediately generate Hugin OOBN class for
the inheriting ioobn class/interface and store in the meta-node
structure. The inheriting process is simply a copy operation
from inherited meta-node to inheriting meta node.

The “Meta-node Table can be extended to represent the
tree structure by just adding parent and child class/interface
references (index and/or name).

A sample table can be viewed as following:
4) Executable generation:
• Pre-processing

1) Removing comments and unnecessary codes
• Compiling

1) Parsing files to get meta node information
2) Creating Meta-nodes for each file
3) Completing meta-nodes based on dependency and in-

heritance
4) Type checking and consistency checking
5) Generating Hugin OOBN classes equivalent to the

iOOBN class
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Fig. 7. Class hierarchy: Farm example

Fig. 8. Generic Meta node structure

Ind Name Meta Node Children List Parent List
0 MeatCowInf NodeInstance1 1, 2, 4 -
1 MilkCowInf NodeInstance2 3, 5 0
2 DraftingCowInf NodeInstance3 6 0
3 CalvingCowInf NodeInstance4 7 1
4 MeatCowAbs NodeInstance5 5, 6 0
5 MilkCowAbs NodeInstance6 7 1, 4
6 DraftingCowAbs NodeInstance7 - 2, 4
7 CalvingCowAbs NodeInstance8 - 3, 5
8 . . . .
9 . . . .

10 . . . .
TABLE I

TABLE REPRESENTING META-NODE TREE

6) Updating Meta-Node table based on class/interface
definition

• Assembling
1) This part is not yet used in our iOOBN framework
• Loading and linking

1) The linker will arrange the pieces of OOBNs so that
one BN can use instance of another.

2) Maintaining consistencies of changes from parent to

Fig. 9. Example Meta Nodes for the Meta-tree(part-1)

children constructs and change propagation for in-
stances used in other classes
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Fig. 10. Example Meta Nodes for the Meta-tree(part-2)

D. Implementing the system: iOOBN

We have developed a prototype implementation of our
proposed framework using Java programming language and
the Hugin Bayesian network software API. This prototype
is based on a newly defined language NET++, an extended
version of NET used in Hugin. This version of the framework
converts the IOOBN framework definitions of nodes, edges,
classes (abstract and concrete) and interfaces to equivalent
NET language in the HUGIN OOBN definition. Then the
HUGIN engine is used to perform belief updating and other
Bayesian decision network operations.

The grammar for NET++ is given in a Table as a supple-
mentary material.

V. CASE STUDY

As a proof-of-concept case study, we re-engineered an
existing real-world dynamic OOBN model, implemented in
Hugin, in the iOOBN tool. The original OOBN model was
developed as an environmental decision support tool for the
so-called Western Grassland Reserve Project [35], modelling
grassland species composition and how this might change
under different management regimes.

A. Western Grassland Reserve Project

“WGR (Western Grassland Reserve) is dealing with the
grassland vegetation management project to assist by a
Bayesian network model. The fertile grasslands occupied by
Melbourne city have been an attractive place for agricultural
and settlement purpose for long time. As a consequence,
substantial loss of natural habitats has been caused, and many
animals, plants and vegetation communities are now listed as

rare or threatened under the federal Environment Protection
and Biodiversity Conservation (EPBC) Act 1999.

An agreement (Melbourne Strategic Assessment [MSA])
between Victorian State Government and The Australian Gov-
ernment has been sanctioned under the EPBC Act in 2010. Its
focus is on EPBC listed (1) Three ecological communities (a
type of grassland, a woodland and a wetland), (2) six plant
species (two daisies, two orchids, a lily and a Rice-flower)
and (3) four listed animal species (a frog, a bandicoot, a moth
and a lizard).

For urban growth, the MSA permits specified areas of
territory for these EPBC-listed species and communities to
be cleared, along with the subsequent reservation and man-
agement of territory in conservation areas away from urban
development (DPDC 2009, DELWP 2015).

Victoria is obliged to apply an adaptive management frame-
work to the conservation areas, where clear goal for conser-
vation outcomes are set, management options are trialled and
monitored, and the results are communicated and translated
into improvement management. Effective conservation man-
agement demands the ability to understand ecological change.

To be able to direct changes via a range of possible
management actions, an intelligent choice is most likely to
result when the manager is able to:

1) Predict the potential consequences of each action
2) Evaluate the desirability of the predicted consequences
3) Calculate the corresponding costs of each action

A good understanding of the ecosystem including its spatial
and temporal dynamics and the range of possible responses
is required to do these things accurately. For ages, such
knowledge has been held and transmitted orally by indigenous
people, hardly ever integrated into a cultural model of the
decision theory and computer power, allowing the prediction
and evaluation of complex outcomes.

Ecological management response models take as input

1) The initial status of the system, stated as response vari-
ables (e.g. the initial condition of the ecosystem, etc.),
and

2) The environmental conditions the system will be subject
to during the period of predictions (e.g. the expected
climate conditions, a range of alternative management
interventions, the potential threats and their impacts, etc.).

The models make predictions about the status of the re-
sponse variables at the end of the prediction period using
these inputs. The ingredient of the model is thus the causal
relationship between the initial status and the environmental
conditions. This relationship can be encoded using many
different modeling approaches like:

1) Deterministic / rule-based models
2) Stochastic simulations such as Markov chain models
3) Bayesian Networks. (Plain BN, DBN, SBN, OOBN)

At the heart of ecological modelling is the trade-off between
complexity and simplicity. Ecological systems are inherently
complex and messy, while models are most easily built,
tested, used and communicated when they are simple and
sophisticated.
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Prog → classStructure | abstractClassStructure | interfaceStructure
classStructure → ’class’ className parentClass parentInterfaces ’{’ classElement* ’}’

abstractClassStructure → ’abstract’ ’class’ className parentClass parentInterfaces ’{’ classElement* ’}’
interfaceStructure → ’interface’ interfaceName parentInterfaces ’{’ interfaceElement* ’}’
interfaceElement → basicNode | attribute+ | classInstance

parentClass → ’extends’ superClassName | ε
parentInterfaces → ’implements’ interfaceNameList | ε

interfaceNameList → interfaceName (’,’ interfaceName )*
classElement → domainElement | attribute+ | classInstance

domainElement → basicNode | potential
classInstance → ’instance’ instanceName ’:’ className ’(’ bindings ’)’ ’{’ instanceAttributes ’}’

instanceAttributes → label | position | attribute
bindings → inputBindings | inputBindings ’;’ outputBindings | ’;’ outputBindings | ε

inputBindings → inputBinding (’,’ inputBinding )*
inputBinding → formalName ’=’ actualName

outputBindings → outputBinding (’,’ outputBinding )*
outputBinding → formalName ’=’ actualName

basicNode → ’node’ nodeName ’{’ nodeAttribute* ’}’
| nodeType ’node’ nodeName ’{’ nodeAttribute* ’}’
| ’decision’ nodeName ’{’ nodeAttribute* ’}’
| ’utility’ nodeName ’{’ nodeAttribute* ’}’

nodeType → ’discrete’ | ’continuous’
nodeAttribute → state | label | position | attribute | subtype

state → ’states’ ’=’ ’(’ STRING* ’)’ ’;’
label → ’label’ ’=’ STRING ’;’

position → ’position’ ’=’ ’(’ xCoordinate yCoordinate ’)’ ’;’
subtype → ’subtype’ ’=’ ’boolean’ ’;’ | ’subtype’ ’=’ ’label’ ’;’

| ’subtype’ ’=’ ’number’ ’;’ stateValues | ’subtype’ ’=’ ’interval’ ’;’ stateValues
stateValues → ’state values’ ’=’ ’(’ NUMBER* ’)’ ’;’
potential → ’potential’ ’(’ edgeInformation ’)’ ’{’ (potentialAttribute*) ’}’

edgeInformation → childNodes | childNodes ’|’ parentNodes
childNodes → IDENTIFIER+
parentNodes → IDENTIFIER+

data → ’data’ ’=’ ’(’ tuple ’)’ ’;’
tuple → NUMBER | ’(’ tuple ’)’ | tuple NUMBER | ’(’ tuple ’)’ tuple

potentialAttribute → data | modelAttributes
attribute → attribName ’=’ attribValue ’;’

modelAttributes → ’model data’ ’=’ stmt ’;’ | ’model nodes’ ’=’ ’(’ IDENTIFIER* ’)’ ’;’ | attribute
stmt → ’(’ stmt ’)’ | formula ’,’ stmt | formula | ε

attribValue → STRING | NUMBER | ’(’ NUMBER+ ’)’ | ’(’ IDENTIFIER+’)’ | ’(’ ’)’
formula → expr

function call → IDENTIFIER ’(’ ’)’ | IDENTIFIER ’(’ parameters ’)’
parameters → parameter | parameters ’,’ parameter
parameter → formula

expr → boolExpr
boolExpr → sumExpr ((’<’ | ’<=’ | ’>’ | ’>=’ | ’==’ | ’!=’) sumExpr)*
sumExpr → productExpr ((’-’ | ’+’) productExpr)*

productExpr → primary ((’/’ | ’*’) primary)*
primary → literal | function call | ’(’ formula ’)’
literal → ’true’ | ’false’ | NUMBER | STRING | IDENTIFIER

TABLE II
CONTEXT FREE GRAMMAR FOR NPP (NET PLUS PLUS) LANGUAGE

This reflects the tension between traditional cultural models
and scientific models. Scientific models are powerful and
precise, but rigid only to explicit specification, and thus often
lack the flexibility of cultural models. This is partly improved
by the inclusion of elements of probability, uncertainty and
randomness in the structure of scientific models; but despite
these advances, scientific models can still only deal with what
they are designed to deal with, and are thus biased in nature,
and lacking in wisdom.

Hence, the consideration of variables for the model and
how they are connected is crucial. Ideally, such a framework
should help choosing right thing to do, allow change to be
evaluated, and help learning from the experience. Ecologists
and land managers have recognized this need for such a
framework for decades (HollingClark1975, HobbsNorton1996,
LindenMayer2008).

In recent times, Adaptive Management has been prominent
as an organizing framework. It involves the implementation of
several management systems that promise to achieve manage-
ment objectives, monitoring and evaluation of the outcomes,
synthesis of new knowledge to reduce uncertainty, and the
alteration of management that incorporates new knowledge
(walters1986, McCarthy2007, Morrison2012).

Implementation of adaptive management demands finer-
level rationalization, including the ecosystem functions mod-
els, a set of quantitative goals, and a monitoring approach.

The Bayseian Network model describes in greater detail
the species composition of the grassland, and how this com-
position is predicted to change under different management
regimes. Within the adaptive management approach, the BN
has been used for three main purposes:

1) To make predictions about the effects of management
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+In: Cover()

+In: Dead Cover()

+Out: Cover()

+Out: Dead Cover()

«interface»

CommonIO
C1 (Old: 74)

+In: TSRH?

+In: Basal Area

+Out: Basal Area

C2 (Old: 70-73, 75, 76)

+In: Seed Density

+Out: Seed Density

C3 (Old: 69)

+In: Seedling Density

+Out: Seedling Density

+Cover Reduction()

+ADR()

Abstract Class Activity

+In: Adult Density

+Out: Adult Density

+Biomass Residue()

+Left over biomass()

C4 (Old: 7, 84, 85, 114)

+In: Harvest Happens

+Basal Area(inout ~)

+BAR(in ~)

C5 (Old: 48)

+SDR()

C6 (Old: 107)

+In: Seedling Density

-Out: Seedling Density

+Reduc. Biomass()

+Nitrogen Holding()

C7 (Old: 44-46)

+In: Fire Happens?

+Out: Nitrogen in.
+Basal Area(inout ~)

+BAR(in ~)

C8 (Old: 47, 83)

+SDR()

C9 (Old: 113)

+In: Seedling Density

-Out: Seedling Density
+Fire Happens(in ~)

C10 (Old: 28-30)

+Fire Happens(in ~)

C11 (Old: 124-125)

+Fire Happens(in ~)

C12 (Old: 111)

+Cover Death()

+SCR()

+C/B/A Reduction()

Abstract Class Herbicide

+In: Seed Density

+In: Application

-Out: Seed Density

C13 (Old:1,2,12,13, 19-22)

+In: Product

+In: Adult Density

+Out: Adult Density

+Target(in ~)

C14 (Old: 8, 26, 33)

C15 (Old: 10-11)

+In: Product

+In: Basal Area

+In: Seedling Density

+Out: Basal Area

+Out: Seedling Density

+Target(in ~)

C16 

(Old: 14,39,51,62,67,78,

90,99,103,108,117,121)

+CSI()

+RCCC()

+Obj. BCGD()

+Cover Cap()

+Nitrogen Holding()

+Cover Growth()

+Cover Growth()

+Cover Death()

+DCD()

C17 (Old: 81,88)

+In: Seed Density

+In: Season

+In: Nutrient Load

+In: Comp. Sum.

+Out: Adult Density

+Out: Seed Density

+Out: Nitrogen Up.

+Seed Prod Rate()

+Gem Rate()

+Survive Rate()

+Seed Survival Rate()

+Adult Survival Rate()

+New Adults()

+RCCS()

C18 (Old: 9,27,34)

-Adult Density

C19 

(Old:17,40,52,63,100

104,109,118,122 )

+In: Basal Area

+Out: Basal Area

+CSI()

+RPD()

+RPL()

+Obj BACG()

Abstract Class Graze

+In: Season

-In: Duration

C20 (Old: 5,24,31)

+In: Cattle Pal Sum

+In: Adult Density

+Out: Adult Density

+Sheep Pal Sum(in ~)

C21(Old: 6,25, 32)

C22 (Old: 15,37,49,60,65,

79,86,97,101,115,119)

+In: Cattle Pal Sum

+In: Basal Area

+Out: Basal Area

+Sheep Pal Sum(in ~)

C24 (Old:16,38,50,61,66

80,87,98,102,116,120 )

C23 (Old: 84)

+In: Seedling Density

+Out: Seedling Density

C25 (Old: 106)

-In: Seedling Density

-Out: Seedling Density

A  B: A inherits attribute of B

A  C: A implements attribute of C

D()  : D is an embedded attribute

F(~)  : F is an overridden attribute

: Adult Density Reduction

: Basal Area Reduction

: Top Soil Remove Happens?

: Seedling Density Reduction

: Seed Cover Reduction

: Cover/Basal/Adult Reduciton

: comp sum index

: Rel. Comp Cond Cover

: Dead Cover Deterioration

: Rel. Comp Cond Seedlings

: Relative Pal. Live

: Relative Pal. Dead 

ADR

BAR

TSRH

SDR

SCR

C/B/A Reduction

CSI

RCCC

DCD

RCCS

RPL

RPD

Remove Top Soil

Harvest

Fire

Scarify

Herbicide

Herbicide Target

Natural

Grazing

 Interface

 Abstract

Fig. 11. Class hierarchy (machine learning approach)

(including cost-benefit considerations), allowing us to
select a small set of promising options to trial in the field,
from the vast array of possible management options.

2) To make our detailed assumptions about grassland ecol-
ogy and management explicit, and open to criticism and
improvement.

3) As a tool to help us learn, and a frame in which to house
that learning. The BN parameters can be updated as we
learn more about grasslands and their management, and
strengthen our knowledge base

B. Original WGR implementation

In WGR, there is already a form of OOBNs proposed
and available in the Hugin BN software implementation. Not
only is it a well-designed and fully implemented working
model, but it contains sufficient complexity to demonstrate
what we hope to show are the advantages of I-OOBN (for
example, multiple class structures that have similar elements,
e.g. Themeda and other native grasses. By re-engineering
(and re-implementing) using I-OOBN, we will compare the
accuracy and efficiency of the I-OOBN version with original
DOOBN version.

Ecological management response model presented original
WGR project is complex and have a number of limitations with
respect to object-oriented principles, including no elements
of class inheritance. The limitations of the model other than
inheritance are:

1) Lots of specific information is available (e.g. life history
and germination requirements of many grassland species).

2) Lots of interventions are available.
3) Multiple scales of management.
4) Lots of expert opinion.
Knowledge extraction from the existing DOOBN WGR

model is laborious and requires extensive computation of same
repeated structures redundantly. Inferencing, decision making
or generating reports from such enormous system is subject to
efficiency and scalability. Moreover, extending such a complex
and vast system is quite challenging. In exchange of such
design, the model provided with respect to proposed IOOBN
framework is extensible, reusable, scalable and efficient.

C. Re-engineering WGR

The WGR DOOBN contains 129 classes, with 96 containing
only chances nodes with the same set of attributes distributed
among the class (representing the growth cycle of different
kinds of native and exotic grasses), and 33 classes that
contained chance, decision and utility nodes containing other
sets of attributes (representing the management strategies and
their effect on the growth cycle). We re-engineered the classes
in these two groups.

We have re-engineered WGR DOOBN using three methods,
machine learning method, expert elicitation and combination
of both.

1) Based on background knowledge
• Based on managerial intervention types, their effects,

lifespan of plants, type (exotic/weeds/grass/grown from
plants/seed grown/C3/C4 and etc) of plants
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Class 32 (Old: 18)

+In: season, TCover, Scale

+In: LCover, BasCover

+In: Strategy, Burn Difficulty

+Out: Burn Happens

+Uti: Burn Cost

Class 34 (Old: 42)

+In: STCover, NeedleCover, 

+In: BlanketCover,  Product

+In: Strategy, De-Rocked

+In: BroadWeedCover, Scale

+Out: Target, Cover, Application

+Uti: Herbicide Cost

+Em: C3 TargetGrassCover

+Em: BroadLeafTargetCover

Class 33 (Old: 43)

+In: STCover, NeedleCover, 

+In: BlanketCover, Strategy

+In: BroadWeedCover

+Out: Target, Cover, Application

+Uti: Herbicide Cost

Class 31 (Old: 96)

+In: season, Scale

+In: Strategy

+Uti: Sow Cost

Class 26 (Old: 23)

+In: Scale

+In: Strategy

+Uti: Carbon Boost Cost

Class 28 (Old: 41)

+In: Scale, De Rocked?

+In: Strategy

+Out: Harvest Happens?

+Uti: Harvest Happens 

Cost

Class 30 (Old: 77)

+In: Scale, De Rocked?

+In: Strategy

+Out: Remove Top Soil 

Happens?

+Uti: Remove Top Soil 

Happens Cost

Class 29 (Old: 82)

+In: Scale, De Rocked?

+In: Strategy

+Out: Scarify Happens?

+Uti: Scarify Happens 

Cost

Class 35 (Old: 54)

+In: Nitrogen, Carbon 
+In: Phosphorous
+Out: Nutrient Load

+Em: Nitrogen, Carbon 
+Em: Phosphorous

Class 27 (Old: 35,36)

+In: Scale, Duration

+In: Has Fence?

+Out: Has Fence?

+Uti: Graze Cost

Class 37 (Old: 55, 58)

+In: Nitrogen Uptake 
+In: Nitrogen, Carbon 
+In: Phosphorous
+Out: Nutrient Load

+Em: Nitrogen, Carbon 
+Em: Phosphorous

Class 38 (Old: 59)

+In: Remove Top Soil?
+In: Nitrogen, Carbon 
+In: Phosphorous
+Out: Nutrient Load

+Em: Nitrogen, Carbon 
+Em: Phosphorous

Class 36 (Old: 56,57)

+In: Duration
+In: Nitrogen, Carbon 
+In: Phosphorous
+Out: Nutrient Load

+Em: Nitrogen, Carbon 
+Em: Phosphorous

Class 39 (Old: 91,92)

+In: Friability

+Out: Friability

C40 (Old: 94)

+In: Friability

+In: Remove Top Soil?
+Out: Friability

C41 (Old: 95)

+In: Friability

+In: Scarify?
+Out: Friability

Fig. 12. Class (including utility and decision) hierarchy (machine learning approach)

2) Base on Machine learning and pattern mining:
• It is a bottom-up approach. Each old class of OOBN

forms a new class of IOOBN. Then all same graphical
structure-oriented IOOBN classes are replaced by a
new candidate class of IOOBN representing that group
of classes. Afterwards, the groups/new classes are
analyzed to find similarity among them.

• If any K (¿= 2) number of classes have similar-partial
similar structure then

• If one class structure is a substructure of another class
structure they will form a hierarchical structure with
subclass-superclass relation

• Else they will form a hierarchical structure with either
a

• common interface (no embedded node in the similar
segment) or

• common abstract class (at least one embedded node in
the similar segment)

1) Base on Machine learning and pattern mining: First,
the chance node only classes were classified into 25 groups
based on their similarities and dissimilarities with respect
to ecological and biological characteristics, with input from
a domain expert involved in developing the original WGR
DOOBN. This resulted in an interface node, 3 abstract classes
and 25 concrete classes; these were in 4 distinct hierarchies
with 23 derived classes (classes that have been constructed by
inheriting properties of other classes or interfaces rather than
from scratch).

The 33 more complex classes contained 13 that were
distinct, dissimilar and large in size; no re-engineering into

a class hierarchy was possible for these. From the remaining
20 classes, we re-engineered them into 16 concrete classes
of three hierarchies with 13 derived classes. A UML class
diagram for the re-engineered WGR model, along with a
mapping of the original WGR classes into the IOOBN classes,
is provided as a part of the supplementary material.

Overall, we reduced 129 classes into 1 interface, 3 abstract
classes and 52 concrete classes, including 36 derived classes.
This 57% reduction (129 classes down to 56 components)
demonstrates that in large complex models there are indeed
common elements that can be more compactly represented by
a class hierarchy (rather than as a large number of unrelated
classes that actually have many common elements, as in the
original WGR OOBN).

2) Based on expert opinion and machine learning ap-
proach: In this method, we have taken into consideration
the expert opinions to incorporate background knowledge and
machine learning outcomes to build the hierarchical structure.

This resulted in 8 interfaces, 3 abstract classes and 25
concrete classes; these were in 4 distinct hierarchies with
23 derived classes (classes that have been constructed by
inheriting properties of other classes or interfaces rather than
from scratch).

The class hierarchy for remaining 33 more complex classes
are same as machine learning method.

A UML class diagram for the re-engineered WGR model,
along with a mapping of the original WGR classes into the
IOOBN classes, is provided as a part of the supplementary
material.

Overall, we reduced 129 classes into 8 interfaces, 3 abstract
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Mapping of class names: 
New column represents the class names/numbers in reverse engineered version and (Old + Name) columns represent the class names in original WGR version

Table with Blue Header represents constructs those are only available IOOBN. Dark rows indicates “Classes not available in the hierarchy”.

New Old Name

1 74 Remove Top Soil 6
2 70 Remove Top Soil 2

71 Remove Top Soil 3
72 Remove Top Soil 4
73 Remove Top Soil 5
75 Remove Top Soil 7
76 Remove Top Soil 8

3 69 Remove Top Soil 1
4 7 Blanket Harvest

84 Sensitive Harvest 1
85 Sensitive Harvest 2

114 Tolerant Harvest
5 48 Moderate Harvest
6 107 Themeda Harvest
7 44 Killed Fire1

45 Killed Fire2
46 Killed Fire3

8 47 Moderate Fire
83 Sensitive Fire

9 113 Tolerant Fire
10 28 Fragile Scarify 1

29 Fragile Scarify 2

30 Fragile Scarify 3
11 124 Tenacious Scarify 1

125 Tenacious Scarify 2
12 111 Themeda Scarify
13 1 Annual Grass Herbicide 1

2 Annual Grass Herbicide 2

12 Broad Leaf Target Herbicide 1

13 Broad Leaf Target Herbicide 2

19 C3 Grass Herbicide

20 C3 Grass Target Herbicide 1

21 C3 Grass Target Herbicide 2

22 C4 Grass Herbicide
14 8 Blanket Herbicide Target

New Old Name

14 26 Exotic Annual Herbicide Target

33 Grain Herbicide Target
15 10 Broad Leaf Herbicide 1

11 Broad Leaf Herbicide 2
16 14 Broad Weed Herbicide Target

39 Hardy Native Herbicide Target

51 Needle Herbicide Target

62 Onion Herbicide Target

67 Red Leg Herbicide Target

78 Ruder Herbicide Target

90 Sensi Native Herbicide Target

99 Spear Herbicide Target

103 ST Herbicide Target

108 Themeda Herbicide Target

117 Wallaby Herbicide Target

121 Windmill Herbicide Target
17 81 Ruder Natural

88 Sensi Native Natural
18 9 Blanket Natural

27 Exotic Annual Natural

34 Grain Natural
19 17 Broad Weeds Natural

40 Hardy Native Natural

52 Needle Natural

63 Onion Natural

68 Red Leg Natural

100 Spear Natural

104 ST Natural

109 Themeda Natural

118 Wallaby Natural

122 Windmill Natural
20 5 Blanket Graze Cattle

24 Exotic Annual Graze Cattle

31 Grain Graze Cattle

New Old Name

21 6 Blanket Graze Sheep

25 Exotic Annual Graze Sheep

32 Grain Graze Sheep (*)
22 15 Broad Weed Graze Cattle

37 Hardy Native Graze Cattle

49 Needle Graze Cattle

60 Onion Graze Cattle

65 Red Leg Graze Cattle

79 Ruder Graze Cattle

86 Sensit Native Graze Cattle

97 Spear Graze Cattle

101 ST Graze Cattle

115 Wallaby Graze Cattle

119 Windmill Graze Cattle
23 105 Themeda Graze Cattle
24 16 Broad Weed Graze Sheep

38 Hardy Native Graze Sheep

50 Needle Graze Sheep

61 Onion Graze Sheep

66 Red Leg Graze Sheep

80 Ruder Graze Sheep

87 Sensit Native Graze Sheep

98 Spear Graze Sheep

102 ST Graze Sheep

116 Wallaby Graze Sheep

120 Windmill Graze Sheep
25 106 Themeda Graze Sheep

New Old Name

26 23 Carbon Boost
27 35 Graze Intervention Cattle

36 Graze Intervention Sheep
28 41 Harvest Intervention
29 82 Scarify Intervention
30 77 Remove Top Soil Intervention
31 96 Sow Intervention
32 18 Burn Intervention
33 43 Herbicide Intervention Target
34 42 Herbicide Intervention
35 54 Nitrogen Carbon Boost
36 56 Nutrient Graze Cattle

57 Nutrient Graze Sheep
37 55 Nutrient Fire

58 Nutrient Natural
38 59 Nutrient Remove Top Soil
39 91 Soil Graze Cattle

92 Soil Graze Sheep
40 94 Soil Remove Top Soil
41 95 Soil Scarify
42 3 Basal Adult Cover Graze (BACG)
43 4 Biomass Natural
44 64 Plant Intervention
45 53 Nui Adder
46 89 Sensitive Native Sow
47 93 Soil Natural
48 110 Themeda Plant
49 112 Themeda Sow
50 123 Basal Cover Growth Death (BCGD)
51 126 Biomass Summaries
52 127 Main
53 128 EnvValue
54 129 Nutrient Harvest [Found Blank]

Constructs Name

Interface CommonIO
Abstract 
Classes

Activity
Graze

Herbicide

Fig. 13. Old vs New class name mapping

classes and 52 concrete classes, including 36 derived classes.
This 51% reduction (129 classes down to 63 components)
demonstrates that in large complex models there are indeed
common elements that can be more compactly represented by
a class hierarchy (rather than as a large number of unrelated
classes that actually have many common elements, as in the
original WGR OOBN) with necessary background knowledge
and more interpretable representation.

This kind of more compact representation also facilitates
understanding of the model, and can obviously reduce the
complexity of the associated documentation. Moreover, ex-
tending such a complex model is quite challenging, especially
if the original BN modellers and/or the domain experts who
build the original version are no longer available. Thus, this
re-engineering case study suggests that the IOOBN framework
can be useful for producing more efficient, reusable, extensible
and scalable complex BN models.

D. Comparing two versions: Original vs. Reengineered

The WGR DOOBN contains 129 classes, with 96 containing
only chance nodes with the same set of attributes distributed
among the class (representing the growth cycle of different
kinds of native and exotic grasses), and 33 classes that
contained chance, decision and utility nodes containing other
sets of attributes (representing the management strategies and
their effect on the growth cycle). We re-engineered the classes
in these two groups.

First, the chance node only classes were classified into
25 groups based on their similarities and dissimilarities with

respect to ecological and biological characteristics, with input
from a domain expert involved in developing the original
WGR DOOBN. This resulted in 8 interface nodes, 3 abstract
classes and 25 concrete classes; these were in 4 distinct
hierarchies with 23 derived classes (classes that have been
constructed by inheriting properties of other classes or inter-
faces rather than from scratch).

The 33 more complex classes contained 13 that were
distinct, dissimilar and large in size; no re-engineering into
a class hierarchy was possible for these. From the remaining
20 classes, we re-engineered them into 16 concrete classes of
three hierachies with 13 derived classes. A UML class diagram
for the re-engineered WGR model, along with a mapping of
the original WGR classes into the iOOBN classes, is provided
in [31].

Overall, we reduced 129 classes into 8 interfaces, 3 abstract
classes and 52 concrete classes, including 36 derived classes.
This 50% reduction (129 classes down to 63 components)
demonstrates that in large complex models there are indeed
common elements that can be more compactly represented by
a class hierarchy (rather than as a large number of unrelated
classes that actually have many common elements, as in the
original WGR OOBN).

This kind of more compact representation also facilitates
understanding of the model, and obviously reduces the com-
plexity of the associated documentation. Moreover, extending
such a complex model is quite challenging, especially if the
original BN modellers and/or the domain experts who build
the original version are not longer available. Thus this re-
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+In: Cover()
+In: Dead Cover()
+Out: Cover()
+Out: Dead Cover()

«interface»
Interventions

C1 (Old: 74)
+In: TSRH?
+In: Basal Area
+Out: Basal Area

C2 (Old: 70-73, 75, 76)
+In: Seed Density
+Out: Seed Density

C3 (Old: 69)
+In: Seedling Density
+Out: Seedling Density

+Cover Death()
+SCR()
+C/B/A Reduction()

Abstract Class Herbicide
+In: Seed Density
+In: Application
-Out: Seed Density

C13 (Old:1,2,12,13, 19-22)
+In: Product
+In: Adult Density
+Out: Adult Density

+Target(in ~)

C14 (Old: 8, 26, 33)

C15 (Old: 10-11)
+In: Product
+In: Basal Area
+In: Seedling Density
+Out: Basal Area
+Out: Seedling Density

+Target(in ~)

C16 
(Old: 14,39,51,62,67,78,
90,99,103,108,117,121)

+CSI()
+RCCC()
+Obj. BCGD()
+Cover Cap()
+Nitrogen Holding()
+Cover Growth()
+Cover Growth()
+Cover Death()
+DCD()

C17 (Old: 81,88)

+Seed Prod Rate()
+Gem Rate()
+Survive Rate()
+Seed Survival Rate()
+Adult Survival Rate()
+New Adults()
+RCCS()

C18 (Old: 9,27,34)
+Adult Density

C19 
(Old:17,40,52,63,100

104,109,118,122 )
+In: Basal Area
+Out: Basal Area

C20 (Old: 5,24,31)
+In: Cattle Pal Sum
+In: Adult Density
+Out: Adult Density

+Sheep Pal Sum(in ~)

C21(Old: 6,25, 32)

C22 (Old: 15,37,49,60,65,
79,86,97,101,115,119)

+In: Cattle Pal Sum
+In: Basal Area
+Out: Basal Area

+Sheep Pal Sum(in ~)

C24 (Old:16,38,50,61,66
80,87,98,102,116,120 )

C23 (Old: 84)
+In: Seedling Density
+Out: Seedling Density

C25 (Old: 106)
-In: Seedling Density
-Out: Seedling Density

+In: Seed Density
+In: Season
+In: Nutrient Load
+In: Comp. Sum.
+Out: Adult Density
+Out: Seed Density
+Out: Nitrogen Up.

«interface»
NaturalInterven

«interface»
HumanInterven

«interface»
ReduceNutrients

«interface»
AddSpecies

«interface»
RemoveSpecies

«interface»
RemoveBiomass

«interface»
Burn

+CSI()
+RPD()
+RPL()
+Obj BACG()

Abstract Class Graze
+In: Season
-In: Duration+Cover Reduction()

+ADR()

Abstract Class 
Harvest-Scarify

+In: Adult Density
+Out: Adult Density

+Biomass Residue()
+Left over biomass()

C4 (Old: 7, 84, 85, 114)
+In: Harvest Happens

+Basal Area(inout ~)
+BAR(in ~)

C5 (Old: 48)

+SDR()

C6 (Old: 107)
+In: Seedling Density
-Out: Seedling Density

+Reduc. Biomass()
+Nitrogen Holding()

C7 (Old: 44-46)
+In: Fire Happens?
+Out: Nitrogen in.

+Basal Area(inout ~)
+BAR(in ~)

C8 (Old: 47, 83)

+SDR()

C9 (Old: 113)
+In: Seedling Density
-Out: Seedling Density

+Biomass Residue()
+Left over biomass()

C10 (Old: 28~30
+In: Scarify Happens

+Basal Area(inout ~)
+BAR(in ~)

C11 (Old: 124~125)

+SDR()

C12 (Old: 111)
+In: Seedling Density
-Out: Seedling Density

«interface»
RemoveTopSoil

«interface»
Add Carbon

A  B: A inherits attribute of B
A  C: A implements attribute of C
D()  : D is an embedded attribute
F(~)  : F is an overridden attribute

: Adult Density Reduction
: Basal Area Reduction
: Top Soil Remove Happens?
: Seedling Density Reduction
: Seed Cover Reduction
: Cover/Basal/Adult Reduciton
: comp sum index
: Rel. Comp Cond Cover
: Dead Cover Deterioration
: Rel. Comp Cond Seedlings
: Relative Pal. Live
: Relative Pal. Dead 

ADR
BAR
TSRH
SDR
SCR
C/B/A Reduction
CSI
RCCC
DCD
RCCS
RPL
RPD

Remove Top Soil
Harvest
Fire
Scarify
Herbicide
Herbicide Target
Natural
Grazing

 Interface
 Abstract

Fig. 14. Class hierarchy (expert opinion and machine learning approach)

engineering case study suggests that the iOOBN framework
can be useful for producing more efficient, reusable, extensible
and scalable complex BN models.

VI. CONCLUSIONS AND FUTURE WORK

Various forms of object oriented Bayesian networks have
been proposed in the literature, to help make BN technology
cope with large-scale problems and to support re-use and
maintainability. These frameworks has resulted in OOBN sys-
tems that contain hierachical composition with encapsulation.
However the key OO feature of inheritance, which brings
a higher level of resuability and scalability, that has been
proposed long ago, have not been formally or fully specified
for OOBNs, nor implemented in any OOBN software that we
are aware of. In this paper, we have presented an extended
iOOBN theoretical framework, which defines inheritance,
polymorphism, encapsulation and abstraction for OOBNs. We
have implemented a prototype version of the framework using
the API of an existing BN software package, and have demon-
strated its efficacy by re-engineering an existing large real-
world dynamic OOBN into the iOOBN framwork, producing

a set of class hierarchies that reduced the number of classes
by more than half.

The iOOBN framework has been designed to support team-
based development of complex BN models. Its interfaces
and abstract classes provide abstraction and should support
incomplete and partial implementation of parts of a larger
system, where later in the model development process, these
segments can be replaced by more detailed or fully concrete
classes. The strong type checking within iOOBNs should assist
modellers avoid confusion or modelling flaws which may lead
to a significant problems in the resultant model. Along with
encapsulation and inheritance, type casting and overriding
provide scalability and maximization of component reuse.

We are currently using iOOBN to develop a model from
scratch for a real-world agriculture domain, which will allow
us to evaluate further how it may improve the modelling
process and the resultant model efficiency. We are also learning
what aspects of the standard BN modelling process need to
be adapted for iOOBN modelling. We have already identified
that compiling an iOOBN into a flattened BN (as done in
the Hugin software) leads to very large complex models that
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run into complexity problems for either exact or approximate
inference. Thus another planned piece of future research is to
adapt the “plug-and-play” incremental compilation algorithm
of Bangsø [4] for use with iOOBN, to take advantage of the
class hierarchy.
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