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Abstract

We present the “Native Fish” Bayesian network, a pedagogical model developed to introduce Bayesian
networks to ecologists. The network models a hypothetical situation where pesticides are used on crops
which impact upon the native fish population in a nearby river system. The network is developed incre-
mentally. The first basic network, Version 1, contains nodes for Annual Rainfall, Drought Conditions,
Tree Condition, Pesticide Use, Pesticide in River, River Flow and Native Fish Abundance. The network
is augmented in Version 2 with nodes for ENSO, Crop Yield and Irrigation. In Versions 1 and 2 the nodes
are all discrete and qualitative. In Version 3, the nodes are made continuous then discretised, and the
CPTs are generated from equations. In Version 4, we present a decision network, where Pesticide Use
and Irrigation become decision nodes, utility nodes are added to represent Landholder Income, Pesticide
and Irrigation Costs, as well as the Environmental Value associated with native fish abundance. For each
version, we show screenshots of the Netica BN software showing the posterior probabilities computed
for a range of predictive and diagnostic reasoning scenarios.
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1 Introduction

“Native Fish” is a pedagogical model developed to introduce Bayesian networks to ecologists. It is almost
as simple as the ubiquitous “Alarm” network [10], and better-suited to the domain, easing the transition to
modeling and elicitation – what we call Knowledge Engineering with Bayesian Networks (KEBN) [5, 15].
“Native Fish” is strictly pedagogical. Although it draws on our academic and consulting experience, the
model is vastly simplified for teaching purposes. For more realistic ecological examples, see [12] or some
chapters in [13].

Although “Native Fish” is used to help teach Bayesian networks, this report is not a Bayesian network
tutorial. It is a reference for the “Native Fish” model, and assumes basic familiarity with Bayesian networks.
Readers wishing an introduction to Bayesian networks are encouraged to consult any of [7, 8, 6, 11, 1, 5,
3, 4]. Of these, Murphy and Charniak are available online and many people find them useful. Pearl’s
introductory essay is also online, and is very short and very clear.1 Korb & Nicholson, Jensen & Nielson
and Kjærulff & Madsen are all accessible introductory texts, while Neapolitan’s excellent books will appeal
to the more mathematically-inclined.

As a brief reminder, we provide the following definition.

Definition 1 (Bayesian Network) A Bayesian network is:

1. A directed, acyclic graph, among

2. a set of random variables making up the nodes in the network, with

3. a set of directed links or arrows connecting pairs of nodes from parent to child, where

4. each node has a possibly-stochastic function that quantifies the effects the parents have on the node.

The arcs in a Bayesian network show direct influence. That is:

Definition 2 (X→ Y:) “X has a direct influence on Y”

The nature of that influence may vary. The definition states only that some effect of X on Y remains
no matter what other variables we condition on or control for. Nothing in the mathematical definition
requires this influence to be causal, but among physically distinct variables, the most natural interpretation
is causal, and there is a close correspondence between minimal Bayesian networks and causality. (See for
example, [9, 14].) When the arcs are causal, the Bayesian network can model physical interventions that
break previous modeling assumptions, as well as standard observations that do not. Arcs in “Native Fish”
are presumed to be causal, unless otherwise stated.

We refer to nodes using a family metaphor.

Definition 3 (Family metaphor:) Arcs go from parent nodes to child nodes.

• Parent⇒ Child

• Ancestor⇒ . . .⇒ Descendant
1His books, on the other hand, are more difficult, and are not included in this list.
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2 The Initial Model (Version 1)

2.1 The scenario

The following paragraph presents the “Native Fish” scenario. Key concepts are highlighted for later refer-
ence.

A local river with tree-lined banks is known to contain native fish populations, which need
to be conserved. Parts of the river pass through croplands, and parts are susceptible to drought
conditions. Pesticides are known to be used on the crops. Rainfall helps native fish populations
by maintaining water flow, which increases habitat suitability as well as connectivity between
different habitat areas. However rain can also wash pesticides that are dangerous to fish from
the croplands into the river. There is concern that the trees and native fish will be affected by
drought conditions and crop pesticides.

In short, we want to model the effect of pesticide use and rainfall on native fish abundance and tree condition.

2.2 The variables

We are most concerned about the native fish abundance, but since tree condition is also influenced by the
same factors, it can serve as a proxy variable, or provide additional evidence about hidden factors like
pesticide levels in the river itself. Reading the text, we see that native fish abundance and tree condition are
both endpoints: they do not causally affect other variables in the model. Both variables are self-explanatory.

In this model, native fish abundance has two main stressors: water-related and pesticide-related. The
model also has three variables describing the water-related stressor:

water flow and connectivity: More water keeps the river from fragmenting into ponds, and leads to faster
flow, which washes out pollutants. Higher water levels are better for the fish.

rainfall: This is intended to be year-to-date rainfall, a relatively short-term indicator.

drought conditions: A long-term indicator intended to summarize historical conditions. A multi-year
drought will leave the soil quite dry, so that rain which falls soaks into the ground before reach-
ing the rivers. (For this reason, much of the rain in the Australian reservoir catchment areas has failed
to reach the reservoirs.)

Two variables describe the pesticide-related stressor:

Pesticide use: How much pesticide is being used in the river catchment.

Pesticide concentration in river: The amount of pesticide in the river itself – which for this example we
imagine cannot easily be directly observed.

For now, we omit other variables such as croplands and habitat suitability, and ENSO, the El Niño
Southern Oscillation that drives drought cycles in Australia. We also choose to ignore connectivity, summa-
rizing its effects in River flow. In an actual model, these decisions should be made on the basis of subject
matter expertise, desired model fidelity, and time available. Sensitivity analysis can also help decide which
variables most need to be refined. In this example, we presume that analysis has suggested the current set
of variables for the first cycle of model development. Recall that our main goal is pedagogy.
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Node name Type Values
Native Fish Abundance Ordered-3 {High, Medium, Low}
Tree Condition Ordered-3 {Good, Damaged, Dead}

Ordered-2 {Good, Poor}
River Flow Ordered-2 {Good, Poor}

Ordered-3 {High, Medium, Low}
Drought Conditions Nominal-2 {Yes, No}
Annual Rainfall Ordered-3 {Below average, Average, Above Average}

Continuous {0...50, 51...200, 201...400}
Pesticide Use Ordered-2 {High, Low}
Pesticide in river Ordered-2 {High, Low}

Table 1: Nodes and possible values for the seven variables in our model. Some variables illustrate alternative
values.

Node Depends On
Native Fish Abundance River Flow, Pesticide in River
Tree Condition Annual Rainfall, Drought conditions
River Flow Annual Rainfall, Drought Conditions
Pesticide In River Pesticide Use, Annual Rainfall
Pesticide Use
Annual Rainfall
Drought Conditions

Table 2: Dependencies in the Native Fish model

2.3 Nodes and values

Having identified our key variables, we then must choose whether they will be continuous, integer, ordered,
or nominal. Depending on our software, we may have to discretize continuous or integer variables, so we
should specify likely bins or ranges. For other variables, we have to decide how many states each node has.
For ordered variables, that decision may depend on the precision of our knowledge and/or data.

Table 1 sets out the main options for each variable. We use “Ordered-3” to specify an ordered node with
three states, such as {High, Medium, Low}. Nominal nodes have no implied ordering, such as {Red,Green,
Blue}. Binary nodes with states like {On, Off}, {True, False}, or {Yes, No} may or may not have an implied
order. In “Native Fish”we treat such variables as nominal (unordered).

Depending upon the software, the node type can matter for defining, encoding, learning, or doing infer-
ence with the probability distribution at the node.

The next step is to specify the structure of model by defining arcs showing which nodes depend on which
other nodes.

2.4 Arcs

Rereading the scenario, we can infer the dependencies in Table 2. Starting from the endpoints, we first decide
which variables directly influence Native Fish Abundance and Tree Condition (River Flow and Pesticide
in River), then decide which variables will directly influence them. These nodes, Pesticide Use, Annual
Rainfall, and Drought Conditions do not depend on any of the other variables, so they become “root” nodes
in the model. The resulting Version 1 model is shown in Figure 1.
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Figure 1: Structure of the Native Fish model, v.1. We have expanded two steps "backward" from Native
Fish Abundance, and stopped there.

This is a good time to remind ourselves of a bit more terminology. Figure 1 has the nodes labeled as
“Root”, “Leaf” or “Intermediate”; this network has two leaf nodes and three root nodes.

Definition 4 (Tree analogy) :

• root nodes have no parents.

• leaf nodes have no children.

• The rest are intermediate nodes.

The root nodes do have other causes outside the model, and later we may wish to expand the model
to include them. For example, ENSO drives Annual Rainfall, and Pesticide Use is likely determined by
the type of crops grown, and the expected pest level, which itself may be determined by past and expected
rainfall. However, all models have to stop somewhere, and Native Fish Version 1 stops two levels “back”
from Native Fish Abundance. This model also reflects many assumptions which may not be true.

2.5 Assumptions

There is little doubt about the included arcs. As usual, the more controversial assumptions involve the
missing arcs. While it is almost certainly true that Pesticide Use does not affect River Flow, the model
makes the following more dubious assertions:

Pesticides don’t affect tree condition: Pesticides are generally considered harmless to plants, but appar-
ently under some conditions, prolonged exposure to pesticides can stunt growth or cause other prob-
lems – a condition known as phytotoxicity. The effects are heightened by heat or drought, and it may
be the inactive ingredients and their byproducts that are most phytotoxic.2 Also, if pesticides affect
key pollinators, the trees will have trouble propagating. We assume these are second-order effects and
can be ignored in Version 1.

2http://wihort.uwex.edu/flowers/Phytotoxicity.htm
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Rainfall and Drought are unrelated: This is patently false. Even using our intended division into short-
term and long-term, Drought is a function of recent Rainfall. Furthermore, since Australian droughts
come in extended cycles, being in Drought forecasts low Annual Rainfall. However, the upshot is that
they provide information about each other, not that their affect on downstream variables is changed.
So long as both variables are always observed, downstream predictions will be unaffected by the
missing arc. It might even be worthwhile testing whether one of them could be omitted entirely.

Pesticide Use is unrelated to Rainfall or Drought: Pesticides are applied in response to pests. Desert
species are adapted to wait out long dry spells, and pests may “bloom” in rainy years, introducing
a correlation. Conversely, farmers wishing not to stress their plants may apply pesticides more spar-
ingly in drought years. But again, if Pesticide Use and Annual Rainfall are both known, the model
implies their correlation does not matter for pesticide levels in the river.

Other Causes: The effects of all parents not explicitly modeled are summarized the uncertainty in the
child distribution when all parents are known. Therefore it makes sense to include the most important
variables first. Implicitly, this model asserts that no other causes of Native Fish Abundance are as
important as Pesticide in River or River Flow. Likewise, that no other causes of Tree Condition are as
important as Rainfall and Drought.

Both laziness and ignorance are in operation here. Again, the goal was to produce a plausible first-order
model for pedagogical purposes. Since part of the goal is to teach the modeling process, all the caveats
noted above are grounds for subsequent revisions of the model during later tutorial sessions.

2.6 Probability Distributions

The structure shows which variables depend on which other variables, but does not quantify the effect. So,
E = mc2 would become m→E←c, which is precisely equivalent to E = f(m, c), a bare statement of
dependence. Each node needs an expression giving its value or distribution as a function of its parents (if
any).

It is customary to call these local functions Conditional Probability Tables, or CPTs. However, in general
they need not be conditional, probabilistic, or tables. Perhaps the most general term is expressions. When the
node has parents, the expressions are conditional. When there is uncertainty, it is a probability distribution.
If we allow that distributions can be degenerate, then all these expressions are probability distributions, and
for intermediate or leaf nodes, they are conditional probability distributions (CPDs). If we wish to call
attention to the fact that a distribution is degenerate, we may refer to it as a function if it depends on other
nodes, or a default value (for constants).

We begin with distributions for the root nodes, as these are the simplest. Because they give the distribu-
tion prior to observing any other values, these are prior probabilities.

2.6.1 Annual Rainfall

In Version 1, we judge rainfall relative to an Average year, and start with a prior belief that most years are
Average.

P(Rainfall = Below Average) 0.1
P(Rainfall = Average) 0.7
P(Rainfall = Above Average) 0.2
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To match the format of the CPTs shown below, this table can also be written as follows:

P(Rainfall)
Above Average Average Below Average

0.1 0.7 0.2

But in addition to being imprecise, this suffers from vagueness. Over what period is “Average” defined?
This node really ought to be a numeric variable measured in mm/yr.3 We will revisit this in a later section
on making variables continuous.

2.6.2 Pesticide Use

We presume pesticide use.

P(Pesticide Use)
High Low
0.9 0.1

Subsequent version should replace this with a measure, such as percentage of farms in the catchment
using pesticides, the frequency of pesticide application, or the total level of pesticide use in the catchment.

2.6.3 Drought Conditions

Consider the following information about rainfall and drought, from the Australian Bureau of Meteorology.
Although the Bureau does not declare drought, it does provide state governments with data about rainfall

deficiencies, which inform declarations of drought. The Bureau defines serious and severe deficiencies
statistically:

Serious rainfall deficiency: rainfall over three months (or more) lies between the fifth and tenth percentile.

Severe rainfall deficiency: rainfall over three months (or more) is below the fifth percentile.

By definition, serious deficiencies should occur less than 10% of the time, and severe ones less than 5% of
the time.4

In the page “Living with Drought”5, the Bureau provides a definition of drought relative to normal water
use:

Definition 5 (Drought:) A drought is a prolonged, abnormally dry period when there is not enough water
for users’ normal needs. Drought is not simply low rainfall; if it was, much of inland Australia would be in
almost perpetual drought.

The same page notes that over the long term, Australia has “about three good years and three bad years out
of ten,” with intervals between severe droughts varying between 4 and 38 years. Figure 2 shows what the
Bureau considers to be “Major Australian Drought Years” – presumably ones that affected large portions of
the country or economy. It’s worth nothing that many regional droughts do not appear in this figure. All
told, about 30 of the 130 years in the figure are drought years, which is about 25%. We use this as the prior
for our Drought node.

3In earlier versions, the first iteration of the Native Fish model had Annual Rainfall as a discrete node with values.
4http://www.bom.gov.au/climate/glossary/drought.shtml
5http://www.bom.gov.au/climate/drought/livedrought.shtml
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Figure 2: Severe national droughts in Australia.

Figure 3: Annual Rainfall at the Melbourne Regional Office, 1855-2010. From the Australian Bureau of
Meteorology Climate Data Online website.

P(Drought)
Yes No
0.25 0.75

Actual data is available for most places in Australia, sometimes quite far back. Figure 3 shows the
average rainfall in Melbourne from 1855 to 2010, as recorded by the Melbourne Regional Office station.
The tenth percentile for that coastal station is 466mm.6 But it is unlikely one can use data from a single
station to understand drought. Examining this single dataset shows only four years with three or more
consecutive months of rainfall below the tenth percentile, but the region was declared to be in serious or
severe deficiency more often than that.

2.6.4 Pesticide in River

The variable “Pesticide in River” represents the pesticide concentration in the river and thus depends on
Pesticide Use and Annual Rainfall.

6Australian BOM Climate Data Online, Product Code: IDCJAC0001
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P(PesticideInRiver |
PesticideUse, Rainfall)

Pesticide Annual High Low
Use Rainfall
High Below Avg 0.3 0.7
High Average 0.6 0.4
High Above Avg 0.8 0.2
Low Below Avg 0.1 0.9
Low Average 0.2 0.8
Low Above Avg 0.3 0.7

2.6.5 River Flow

River flow is a function of Drought Conditions and Annual Rainfall. Ideally it would be replaced by actual
measurement of flow, but is currently qualitative. When there is above average rainfall and no drought, we
assign a 99% chance of good flow. Conversely, we assign only a 5% chance of good flow if there is below
average rainfall and drought. The remaining uncertainty has to cover what is meant by “drought” and “below
average” as well as uncertainties in how rainfall and drought affect river flow. Values in other conditions
interpolate intuitively. The actual values chosen suggest that rainfall dominates: good flow is twice as likely
when there is drought and above-average rainfall as when there is no drought but below-average rainfall.

P(RiverFlow |
Drought, Rainfall)

Drought Annual Good Poor
Conditions Rainfall
Yes Below Avg 0.05 0.95
Yes Average 0.15 0.85
Yes Above Avg 0.80 0.20
No Below Avg 0.40 0.60
No Average 0.60 0.40
No Above Avg 0.99 0.01

2.6.6 Tree Condition

The first of our leaf nodes, Tree Condition or “TreeCond” could be interpreted to mean the expected dis-
tribution of Good, Damaged, and Dead trees. When conditions are good, we expect only 1% of the trees
to be dead, but when they are bad, we expect as much as 20% of them to die. During drought conditions,
we expect 60% to show some damage as a result of the overall bad conditions; the current annual rainfall
makes a different, with more dead and fewer in good condition when it is below average. When there are
non-drought conditions, the tree condition improves overall, with the number of damaged ranging from 25%
when annual rainfall is below average, down to about 9% when is it above average.
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P(TreeCond |
Drought, Rainfall)

Drought Annual Good Damaged Dead
Conditions Rainfall
Yes Below Avg 0.20 0.60 0.20
Yes Average 0.25 0.60 0.15
Yes Above avg 0.30 0.60 0.10
No Below Avg 0.70 0.25 0.05
No Average 0.80 0.18 0.02
No Above Avg 0.90 0.09 0.01

2.6.7 Native Fish Abundance

Native Fish Abundance, also called “FishAbundance” is given as a distribution over High, Medium,
and Low abundances. It depends on Pesticide in River and River Flow. In good conditions – low pesticide
concentrations and good flow – a low abundance is unlikely, judged to be about 1 in 20. Low abundance is
particularly sensitive to river flow, and when river flow is poor it jumps to 80-89%. In good conditions, we
expect High abundance 80% of the time. High abundance requires everything to go well, so its probability
drops very quickly as conditions deteriorate.

P(FishAbundance |
PesticideInRiver, RiverFlow)

Pesticide River High Medium Low
in River Flow
High Good 0.2 0.4 0.4
High Poor 0.01 0.1 0.89
Low Good 0.8 0.15 0.05
Low Poor 0.05 0.15 0.8
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2.7 Inference & Reasoning (using Version 1)

In this section we look at the posterior probabilities computed given different scenarios, entered as evidence
into the BN (shown in Figures 4 & 5).

Fig 4(a): Before observing any evidence, there is already a nearly 52% chance that Native Fish Abundance
will be Low.

Fig 4(b): If we observe a lot of dead trees, the chance rises to 65%. The dead trees raise the probability
of drought (by diagnostic reasoning from symptom to cause) and the greater probability of drought
raises the chance of poor river flow, raising the chance of low fish abundance.

Fig 4(c): Here, we confirm low fish abundance by observation, further increasing our belief in poor flow
caused by drought. Both observations lower the chance of above average rainfall.

Fig 4(d): This figure shows a predictive reasoning scenario. Rainfall is set to Above Average, almost
doubling the chance of good flow, but also substantially raising the chance of washing pesticide into
the river. The chance of low fish abundance drops from 52% to 34%.

Fig 5(e): If we also observe that there is no long-term drought, we are virtually assured of good flow and
good tree conditions. Probability of low fish abundance drops slightly, still affected by the 3:1 odds
favoring high pesticide levels.

Fig 5(f): If, as expected, pesticide use is high, then the chance of pesticide in the river rises to 80%, and we
are nearly in full ignorance of the native fish abundance.

Fig 5(g): After observing a medium level of native fish abundance, we conclude that pesticide levels in the
river were very likely (91%) high, and that river flow was almost certainly (99.7%) good.

Fig 5(h): Clearing observations and observing only that native fish were in high abundance this year, we
expect good flow and low pesticide levels. The good river flow somewhat increases the chance of
above-average rainfall, and the net effect is that drought conditions are much less likely (down from
25% to 12.5%).
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(a) No evidence (b) Diagnostic reasoning with worst case Tree
Condition

(c) Diagnostic reasoning with worst case Tree (d) Predictive reasoning with best case Annual
Condition and Native Fish Abundance Rainfall

Figure 4: Native Fish BN (Version 1): Reasoning scenarios
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(e) Predictive reasoning with best case Annual (f) Predictive reasoning with best case Annual
Rainfall and Drought Condition Rainfall and Drought Condition, High Pesticide

Use

(g) Mixed reasoning with best case Annual (h) Diagnostic reasoning with best case Native
Rainfall and Drought Condition, High Pesticide Fish Abundance

Use and Medium Native Fish Abundance

Figure 5: Native Fish BN (Version 1): Reasoning scenarios (cont.)
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Node name Type Values
ENSO Ordered-3 {El Niño, Neutral, La Niña}
Irrigation Nominal-2 {Yes, No}
Crop Yield Ordered-2 {High, Low}

Table 3: Nodes and values for the three new nodes.

3 Augmented Model (Version 2)

We now augment the network for new information. The El Niño Southern Oscillation (ENSO) is known
to influence rainfall patterns. Also, landholders are concerned about how changes to pesticide application
regimes (e.g. to protect native fish) might affect crop yields. In this iteration of the model we augment the
network with three new variables:

ENSO: El Niño Southern Oscillation, a root node that determines Annual Rainfall.

Irrigation: Depends on Drought and Rainfall, influences River Flow and new variable Crop Yield.

Crop Yield: Depends on Drought, Rainfall, Pesticide Use, and new node Irrigation.

The resulting network is shown in Figure 6.

Figure 6: Structure of the augmented native fish model (Version 2)

The node types and values for these new nodes are given in Table 3. In theory, Crop Yield would
naturally be a continuous variable measured in mass or volume, but we do not yet have a meaningful scale,
so for now we represent it with 2 ordered values (mainly to keep the CPTs small!).

It remains to define the probability distributions.

15



3.1 ENSO

There were 23 El Niño events and 19 La Niña events in the twentieth century. While this suggests a prior of
[23, 58, 19], we “round off” to take an initial distribution for ENSO as:

P(ENSO)
El Niño Neutral La Niña

0.20 0.60 0.20

3.2 Irrigation

The Irrigation variable represents water diverted from the river to the crops. If the focus of study was on
this particular aspect, an improvement could be to split the Irrigation variable into two, one representing the
amount taken from the river, and the other, the amount delivered to the crops — as this would not be equal.

P(Irrigation|
Drought, Rainfall)

Drought Rainfall Yes No
Yes Below average 0.01 0.99
Yes Average 0.1 0.9
Yes Above average 0.25 0.75
No Below average 0.95 0.05
No Average 0.5 0.5
No Above average 0.2 0.8

Subsequent tables will be easier to show with a screenshot. For comparison, the Netica screenshot7 for
Irrigation is:

3.3 Annual Rainfall

The ENSO variable gives new conditionals on the annual rainfall. The following screenshot shows the new
table.

7Netica BN software, www.norsys.com
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3.4 River Flow

Irrigation takes water out of the river, reducing flow. Therefore, the distribution in River Flow has to depend
on Irrigation. River flow is better without irrigation. For a first cut, we imagine that irrigation increases the
chance of Poor river flow by around 10%.

The following screenshot shows the modified table. Alternate rows show the expected probability dis-
tributions for River Flow, with and without Irrigation.

3.5 Crop Yield

The new variable Crop Yield has two states and four parents. Ideal conditions give a 99% chance of High
yield, declining towards 1% as conditions worsen, with the following progression:

[99, 95, 95, 80, 80, 70, 60, 60, 50, 50, 50, 40, 30, 30, 30, 25, 20, 20, 15, 15, 10, 5, 2, 1]

The full distribution is shown in the following screenshot:
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3.6 Inference & Reasoning (using Version 2)

In this section we look at the posterior probabilities, of the new nodes, computed given different scenarios,
entered as evidence into the BN (shown in Figures 7 & 8).

Fig 7(a): Before observing any evidence, there is already a 55% chance that Crop Yield will be high.

Fig 7(b): If we observe an El Nino event, our probability of below average rainfall increases, and thus
reduce the chance of a good crop yield from 55% to 43%.

Fig 7(c): On the other hand, if we observe an La Nina event, the chances of a good crop yield increase to
74%.

Fig 7(d): Next we repeat the last two scenarios whist observing Drought Conditions. During a El Nino
event, drought conditions dramatically reduce the chances of Irrigation, from 61% to 5%.

Fig 8(e): During a La Nina event, drought conditions still reduces the chances of Irrigation, but not so
greatly (29% to 20%).

Fig 8(f): When there is no drought and rainfall is above average, a high crop yield is very likely (94%).

Fig 8(g): From the above scenario, if we observe a low crop yield, we conclude the explanation that the
chances of Pesticide Use and Irrigation are low.
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Fig 8(h): Clearing observations and observing only that crop yield is good, we expect a neutral ENSO
(57%) or a La Nina event (27%), and no drought (91%). Additionally it increases the chances that
pesticide and Irrigation have been used.

(a) No evidence (b) Predictive reasoning with El Nino event

(c) Predictive reasoning with La Nina event (d) Predictive reasoning with worst case ENSO
and Drought Conditions

Figure 7: Native Fish BN (Version 2): Reasoning scenarios
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(e) Predictive reasoning with mixed case ENSO (f) Predictive reasoning with best case Annual
and Drought Condition Rainfall and Drought Condition

(g) Mixed reasoning with best case Annual (h) Diagnostic reasoning with best case Crop
Rainfall and Drought Condition, yet Low Crop Yield

Yield

Figure 8: Native Fish BN (Version 2): Reasoning scenarios (cont.)
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4 Continuous Nodes and Equations (Version 3)

As noted earlier, some of our nodes are really continuous variables, and should be defined that way, even
if they have to be discretized for inference. Additionally, some of the tables are getting large and ad-hoc.
The relationships are much simpler than a full table would imply. Using equations can help capture the
“local” structure. Thus, in this iteration, we convert many nodes to continuous nodes, and, where possible,
use equations to describe relationships between nodes. (In Netica, the continous nodes are discretised and
the equations are used to generate the CPTs.)

The changes serve purely as a teaching example. The actual equations and values would withstand even
less scrutiny than the previous version of the network.

There are ten variables in the extended network. At least half are naturally continuous, and two more
are cast as continuous to aid with the equations defining their children. Only Drought, Irrigation, and Tree
Condition will remain discrete.

4.1 ENSO

Although there are weak and strong El Niño events, ENSO is naturally a discrete variable. However, since
Annual Rainfall is naturally continuous (mm/yr), it will be convenient to define Rainfall as multiples of
ENSO. That means ENSO has no units, and an arbitrary scale – we can adjust the constant in the equation
for Rainfall to yield sensible values in mm/yr. We modeled ENSO as a discrete variable with values with an
arbitrary scale from -2 to 2. El Nino gets the value -2, Neutral 0 and La Nina 2.

4.2 Annual Rainfall

Annual rainfall is now defined by a normal distribution with mean 126 + 50×ENSO, and a standard devia-
tion of 30; the unit is millimetres (mm).

P(Rainfall | ENSO) = NormalDist(Rainfall, 126 + 50*ENSO, 30)

Discretization is [0, 51, 201, 400] for Below average, Average, and Above average.

4.3 River Flow

River Flow is given by a Normal distribution with a mean dependent on Drought and Irrigation, and a fixed
standard deviation of 50. Denote Annual Rainfall by R. Then, in table form:

Drought Irrigation Mean River Flow
Yes Yes R/3
Yes No R/2
No Yes R/2
No No R

The Netica equation uses the ternary ?: operator for if..then..else:
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p (RiverFlow | Drought, Rainfall, Irrigation) =
NormalDist(RiverFlow,

Drought==Yes && Irrigation==Yes ? Rainfall/3 :
Drought==Yes && Irrigation==No ? Rainfall/2 :
Drought==No && Irrigation==Yes ? Rainfall/2 :
Rainfall,
50)

Discretization is [400, 100, 0] for Good, Poor. These units are arbitrary.

4.4 Pesticide Use

Pesticide Use is made continuous, with states High, Low discretized to [5, 2, 0]. As with ENSO, the units
are arbitrary.

4.5 Crop Water

In Version 2, the Crop Yield variable has 4 parents. Of these 3 of the parents (Drought Conditions, Annual
Rainfall and Irrigation) pertain to the amount of water available to the crops. In order to simplify the the
Crop Yield function, we create a new variable called Crop Water, which summarizes the information from
the 3 parents (this is an example of divorcing parents).

The new Crop Water node is discretized with [400, 100, 0] for Good, Poor, the same as River Flow, and
is defined by the function:

p (CropWater | Drought, Rainfall, Irrigation) =
Drought==Yes && Irrigation==Yes ? NormalDist(CropWater, Rainfall/2, 50) :
Drought==Yes && Irrigation==No ? NormalDist(CropWater, Rainfall/3, 50) :
Drought==No && Irrigation==Yes ? NormalDist(CropWater, Rainfall, 50) :
NormalDist(CropWater, Rainfall/2, 50)

4.6 Crop Yield

Crop Yield is made continuous with discretization [10, 2, 0] and the value is defined by the (rather arbitrary)
deterministic equation:

CropYield (PesticideUse, CropWater) =
PesticideUse * CropWater/200

4.7 Pesticide in River

The pesticide concentration is modeled as a concentration given by a linear function of Pesticide Use and
Rainfall. Pesticide concentrations increase with use, and with rainfall, which washes pesticides into the river.

PesticideInRiver (PesticideUse, Rainfall) =
PesticideUse * Rainfall/200

Discretization is [10, 2, 0], for some scale of particles per volume. A more faithful model might find a
threshold past which increased rainfall washes no more pesticide in, but dilutes concentrations because of
increased flow.
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4.8 Native Fish Abundance

Abundance is given by a normal distribution with mean dependent on flow and pesticide concentration lev-
els. The equation makes use of Netica’s ternary ?: operator for if..then..else. If concentrations are
< 2 (their lowest level), then abundance is half of River Flow, else it is one third River Flow.

p (NativeFish | PesticideInRiver, RiverFlow) =
PesticideInRiver<2

? NormalDist(NativeFish, RiverFlow/2, 20)
: NormalDist(NativeFish, RiverFlow/3, 20)

4.9 Inference & Reasoning (using Version 3)

In this section we look at the posterior probabilities computed given different scenarios, entered as evidence
into the BN (shown in Figure 9).

Fig 9(a): Before observing any evidence, there is already a 51% chance that Native Fish Abundance will
be low, similar to the previous versions.

Fig 9(b): Next we observe the worst case scenario for the Native Fish Abundance with an El Nino event
and high Pesticide Use. The chances of high Pesticide in the river decreases, because there is less
runoff, however, the chances of poor River Flow greatly increases resulting in a overall increase in the
probability of low Native Fish Abundance.

Fig 9(c): Clearing the observations and observing a high Native Fish Abundance and good Tree Condition,
increases the chances of a La Nina event, No Drought Conditions and low Pesticide Use.

Fig 9(d): Next we change the Native Fish Abundance observation from high to low. This increases the
chances of an El Nino event, Drought Conditions and Pesticide Use, however the greatest change is in
the chances of Irrigation, increasing from 27% to 62%, which would explain the low Fish Abundance
despite the good Tree Condition.
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(a) No evidence (b) Predictive reasoning with worst case ENSO
and High Pesticide Use

(c) Diagnostic reasoning with best case Tree (d) Diagnostic reasoning with mixed case Tree
Condition and Native Fish Abundance Condition and Native Fish Abundance

Figure 9: Native Fish BN (Version 3): Reasoning scenarios
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5 Decision Network (Version 4)

Suppose there is a proposal to allow farmers to take water from the river system to irrigate their crops.
Increased irrigation will help the crops, but reduce river flows, affecting fish habitat and pesticide concen-
trations in the river. Irrigation could increase pesticide runoff.

River managers are looking at the trade-offs in varying the use of fertilisers in the area, and releasing
water for farming irrigation. They want to find the best trade-off. This is a decision problem, and the right
way to model it is by making Irrigation a decision node. For that to work, we have to define utilities. When
we augment a Bayesian network with utility and decision nodes, we have a Bayesian decision network,
sometimes called an Influence Diagram [2].

5.1 Review

The expected utility of a decision is the probability-weighted value of the decision’s outcomes. The Bayesian
optimal decision is the one with the greatest expected utility.

Definition 6 (Bayesian Optimal Decision) The Bayesian optimal decision maximizes expected utility, where
the expected utility of a decision is:

E(decision) =
∑

i

P (outcomei|decision)× U(outcomei)

Sometimes other optimizations are appropriate. For example, game theory often employs minimax,
where each player minimize the maximum loss. However, we restrict ourselves to Bayesian optimal deci-
sions, which can be solved entirely within a Bayesian decision network.

5.2 Adding decision and utility nodes

We take as our starting point the augmented discrete network with ENSO, Crop Yield, and Irrigation (Ver-
sion 2). To convert this to a decision network, we will define new decision nodes, Pesticide Use and Irriga-
tion, and associated utility nodes.

In this simple model, the following utilities suggest themselves:

• Environmental value of Native Fish Abundance

• Landholder Income from Crop Yield

• Pesticide Cost for applying pesticides

• Irrigation Cost from irrigating

They are configured as shown in Figure 10. For demonstration purposes, we have selected rather arbitrary
utilities as follows:

Utility Node States Utilities
Environmental Value [High, Medium, Low] [200, 200, -200]
Crop Yield [High, Low] [1200, 100]
Pesticide Cost [High, Low] [-100, 0]
Irrigation Cost [Yes, No] [-200, 0]
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Figure 10: Decision Network (Version 4) with two decision nodes, Pesticide Use and Irrigation.

Inspection of the table shows that Crop Yield has a strong influence. However, the numbers have been
selected so that before any observations are made, the utilities are only slightly in favor of high pesticide use
(512:506). 8

8Utilities have no absolute zero nor a natural scale, so differences and ratios have no metric value. But we may conclude that
631:566 is a stronger preference than 358:351.
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5.3 Some sequential decision-making scenarios (Version 4)

We now look at just a few of the decision scenarios modeled in the Native Fish decision network (shown in
Figures 11 & 12):

Fig 11(a-b): Without any observed evidence, the utilities are slightly in favor of High Pesticide Use (512:506).
After deciding to use Pesticide, we now see that the utilities also favor Irrigation (512:477).

Fig 11(c-d): Considering the optimal conditions of no drought and a La Nina event, the utilities still favor
the use of pesticides (935:908). However the plentiful crop water supply means that the utility of
Irrigating (given pesticide has been used) is now not in favor (830:935).

(a) No Evidence (b) Utilities favor High Pesticide Use and
Irrigation

(c) Best case scenario with La Nina event and (d) Utilities favor High Pesticide Use and
No Drought Conditions No Irrigation

Figure 11: Native Fish Decision network (Version 4): Decision scenarios
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Fig 12(e-f): Going to the opposite extreme, with drought conditions and an El Nino event, Pesticide use
and Irrigation are no longer favored (-13:63 & 29:63), as the payoff on Crop Yield will likely be low,
regardless, and will not justify the costs.

Fig 12(g-h): However, when there is no drought, Irrigation is more effective and thus is favored during an
El Nino event (419:364).

(e) Worst case scenario with El Nino event and (f) Utilities favor Low Pesticide Use and
Drought Conditions No Irrigation

(g) Mixed case scenario with El Nino Event and (h) Utilities favor Low Pesticide Use and
No Drought Condition Irrigation

Figure 12: Native Fish Decision network (Version 4): Decision scenarios (cont.)
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A Versions & Filenames
Filename Description
NF_V1 Original 7-variable discrete network.
NF_V2 Adds 3 variables to NF_V1: ENSO, Irrigation, and Crop

Yield.
NF_V3 NF_V2 with 7 variables continuous (all but Drought, Ir-

rigation, and Tree Condition). 4 use equations: Rainfall,
Pesticide in River, RiverFlow, and Abundance.

NF_V4 NF_V2with Pesticide Use and Irrigation converted to de-
cision nodes. Four utilities nodes added: Pesticide Cost,
Irrigation Cost, Landholder Income, Environmental
Value.
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