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ABSTRACT

In his 1998 book "Why Is Sex Fun?” [2] Jared Diamond as-
sumed he was asking a rhetorical question. How could it not
be fun for those at the tail end of billions of years of evo-
lution? In the meantime, however, an emerging subspecies
of economists have been arguing that Diamond’s question
needs to be taken seriously: sex is fun only by evolutionary
accident, and not because it is an action promoting evolu-
tionary fitness. They claim: 1) utilities and fitness prediction
co-evolved to fill any gap in the accuracy of predictions of
the reproductive value of actions (“Gap Theory”); and 2) this
implies that utilities and the expected fitness of actions are
distributed randomly relative to each other, and, in particu-
lar, are uncorrelated (“Non-Association Thesis”). We argue
that Gap Theory has much to commend it, but that the
inference to (2) is a non sequitur. Furthermore, we empir-
ically demonstrate the falsity of Non-Association under a
variety of environments realized in evolutionary simulations
that satisfy Gap Theory.
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Rational decision making, in the classic view [9], requires
maximizing expected utility by, first of all, assessing as best
one can the consequences of available actions and then eval-
uating those actions by computing their probability-weight-
ed implications for utility. In other words, rationality is the
selfish utility maximization of Equation 1

max EU(a) = ZU(Oi)P(oi\a) (1)

with a ranging over available actions and ¢ over possible
outcome states. For our purposes in this paper, we will ig-
nore issues to do with ethics and altruism and accept this
model (although, in fact, we believe ethical decision mak-
ing is more rational than selfish decision making!). We shall
also simply assume that cognition in general evolved, and so
the ingredients of this “rational” decision making, predictive
probabilities and utilities in particular, also evolved. The
question we wish to consider is how such decision making
could evolve.

Jared Diamond [2] assumed that utilities in particular
must have evolved to reinforce the choice of actions that
are more fit over those that are less fit, i.e., the Positive As-
sociation Thesis between utility and fitness. Those who ever
found sex unfun, found extinction rational. So, whatever is
left of sex is fun, while falling over cliffs is not. These sorts
of claims seem not only intuitive, but intuitively obvious,
which is exactly why his book title is funny. Rather than
humor, some seem to have found a challenge in the title: to
explain the evolution of utility. While we hope we retain a
sense of humor, we take their challenge seriously.

This argument resides in a wider context. Just as improved
understanding of evolution led to its application to psychol-
ogy in the evolutionary psychology movement, evolutionary
concepts have infiltrated economic thinking, leading to re-
searchers calling themselves evolutionary economists. The
group of economists concerned here take the evolution of
utility seriously, however their idea of fitness is individual
fitness, rather than the better justified concept of inclusive
fitness of Hamilton [4] and Dawkins [1]. This is possibly due
to a commitment to rational choice theory as the basis of
economic analysis. While this may work in economics, indi-
vidual fitness has no ability to explain the proven evolution
of altruism and social cooperation, which has been at the
center of research in evolutionary psychology and compu-
tational intelligence in recent decades. Individual fitness is
just not fit for purpose.! Regardless, we can find sufficient

!Granted, it is possible to save the language of individual
fitness, as Nowak, Tarnita and Wilson have (in)famously



grounds for rejecting the economists’ account of the evolu-
tion of utility in their own terms, using individual fitness.
For discussions of the wider concerns see, for example, Ru-
bin and Capr [12] and Friedman [3].

2. THE GAP THEORY OF UTILITY

Two serious economists, Samuelson and Swinkels [13], be-
gin their argument from the question “What is the value of
utility?”2 Their answer is consistent with recent work on the
neuroscience of emotion (e.g., [11]) and also reinforcement
learning theory in AI, namely that utilities serve to direct
short- and intermediate-range decision making towards ulti-
mate rewards, in their case the ultimate reward of reproduc-
tion. In reinforcement learning, actions which have immedi-
ate rewards (positive or negative) contribute some “tax” on
that reward to actions in the recent past which have helped
to reach the final rewarding state. In effect, intermediate
actions build up a history of rewards into stable utilities as-
sociated with those actions, with the result that the more
useful actions will be chosen more frequently over time. Util-
ities, then, are a kind of currency used to boost the choice
of some actions and suppress those of others.

But, then, why would anyone need to have some actions
boosted and others suppressed? If we were all perfectly ratio-
nal, not merely in the sense of maximizing expected utility
but also in the sense of having optimal expectations and
perfect prediction, then we would evolve to always take ac-
tions that maximize our expected fitness, and there would
be no role for utility to play in our decision making. The
long-range effect of intermediate actions would be unam-
biguous, and there would be no evolutionary advantage to
boosting fit actions or suppressing unfit actions. The only
adaptive role possible for utilities is to fill the gap between
our predictions of fitness and the systematic (evolutionarily
repeated) objective probabilities of fitness outcomes in sim-
ilar circumstances. Assuming utilities are strictly adaptive
then, positive utilities boost the selection of actions which
underestimate their objective expected fitness by the exact
amount needed to compensate for the underestimation, and
likewise negative utilities exactly compensate for the over-
estimation of fitness. We can call this the Gap Theory of
Utility, and it is due to Samuelson and Swinkels. We could
quibble about the fine points, but we accept it in general
terms. Samuelson and Swinkels even prove it mathemati-
cally, for a very highly constrained set of circumstances.

While Gap Theory dictates a strict relation between util-
ities of actions and their expectations of fitness, it leaves
entirely open the question of their correlation or lack of cor-
relation.

2.1 Utilities and Gap Theory

argued [8]. But providing rules to translate inclusive fitness
language into a far more cumbersome language of individual
fitness (in effect, spreading inclusive fitness effects across all
the relevant individuals) doesn’t save individual fitness as
an explanatory concept. That idea is rather like suggesting
that an insightful recursive algorithm written compactly in
Lisp is just as insightful when translated into 1000 lines of
Cobol. It just isn’t.

2Other economists have further developed the work of
Samuelson and Swinkels since then, for example Rayo and
Robson [10]. While the latter is interesting, it doesn’t ques-
tion Samuelson and Swinkel’s main propositions and adds
unnecessary complexity, so we will not treat it here.

Agent

X+y y X 0

Figure 1: A generic decision problem with utilities.

Samuelson and Swinkels present an extremely simple mod-
el of utility and decision making [13] in which agents have
a choice between two actions, A and —A, which have asso-
ciated probabilities of “success” — i.e., reproduction — p and
q, respectively. There is a value associated with success, z,
and some other value associated with failure. In order to fix
a utility scale, we can simply set the value of reproduction
x = 1. Then the remaining question is what utility should
be associated with A and —A. Samuelson and Swinkels give
the value of = A by assigning 0 utiles to the combination of
—A and failure. The value of A alone is described as y and is
the focus of their attention. The decision problem can then
be represented by Figure 1. While their model is, of course,
too simple to represent any real decision making, it never-
theless contains the needed ingredients to answer some basic
questions about the evolution of utility; and the simplicity
enables them their simple proof of a restricted Gap Theory.

Given this much, optimal decision making (maximizing re-
productive success) is described by choosing action A if and
only if p(x +y)+ (1 —p)y > qx, which is equivalent to choos-
ing A whenever A = p — ¢ > 0. Since no agent lives in an
ideal world, Samuelson and Swinkels introduce monotonic,
continuous increasing predictive functions ¢(sp) = p’ and
#(sq) = ¢’ [13], representing the agent’s ability to predict
p and ¢ given its perceptual state, what it can sense about
the world.? In that case, the best decision rule the agent can
adopt is to choose A if and only if p’(x +y)+ (1 —p')y > ¢'=.
Where § = p’ — ¢/, this is equivalent to selecting A when-
ever & +y > 0. This latter rule is equivalent to the optimal
decision whenever 6 +y = A, which is to say, whenever the
utility of A — i.e., y — exactly covers the gap between the
objective probabilities p and ¢ and the agent’s estimated
probabilities ¢(sp) and @(sq).

Samuelson and Swinkels introduced this model of “Gap

3They claim the restrictions of monotonicity and continu-
ity are evolutionarily plausible. This is contestable, but we
shall not bother contesting it here, as the issue would be a
distraction. The restriction of inputs to immediate percepts,
however, is a much more serious issue than monotonicity and
continuity. Samuelson and Swinkels suggest that this too is
evolutionarily plausible, but in that they are mistaken. The
idea that evolution would not, for example, take advantage
of memory in adapting utility, which is implied, is absurd.
In the future, we will develop simulation models to explore
more interesting, intelligent and evolutionarily plausible pre-
dictors. In this work, however, we limit ourselves to their
simpler scenario.



Theory” and indeed proved its correctness under their re-
strictive conditions on ¢.

2.2 Gap Theory and Association

Samuelson and Swinkels argue, or, perhaps more accu-
rately, assume, that Gap Theory implies the Non-Association
Thesis. Gap Theory implies that there is evolutionary pres-
sure for a perfect fit between the over- or under-prediction
of fitness and utilities associated with that action. The Non-
Association Thesis is therefore equivalent to over- and under-
prediction being unrelated to the fitness of the actions being
considered. So, these economists are presuming that over-
and under-prediction are random accidents of evolution rather
than a systematic product of evolution. In their follow-up
work, Rayo and Robson present this argument, or non-argu-
ment, plainly in their abstract [10]:

Why did evolution not give us a utility function
that is offspring alone? Why do we care intrin-
sically about other outcomes, food, for example,
and what determines the intensity of such pref-
erences? A common view is that such other out-
comes enhance fitness and the intensity of our
preference for a given outcome is proportional
to its contribution to fitness. We argue that this
view is inaccurate. Specifically, we show that in
the presence of informational imperfections, the
evolved preference for a given outcome is deter-
mined by the individual’s degree of ignorance re-
garding its significance.

It’s clear that there is a conflation of Gap Theory with the
Non-Association Thesis. But, even more plainly than this,
the over- and under-prediction of the fitness outcomes of our
actions may well be under evolutionary control, rather than
randomly distributed. Suppose, for example, that we evolved
to be systematically conservative in our predictions, so that
we underestimated the fitness outcomes of fitter actions and
overestimated the fitness outcomes of unfit actions — i.e.,
that we were biased in estimating the fitness outcomes of
our actions towards zero. In that case, the gap in predicting
fit actions would be filled by positive utilities and the gap
for unfit actions would be filled by negative utilities, yielding
the Positive Association Thesis that most people believe in.
The inference to Non-Association is a non sequitur so long
as the premise of a random distribution of prediction error
remains suppressed and unsupported. This is a surprising
omission inasmuch as the large volume of work by cogni-
tive psychologists exploring and detailing systematic human
error in prediction suggests anything but asystematicity in
the evolution of prediction error (e.g., [15, 3, 14]). Nor are
Samuelson and Swinkels unaware of this literature, as they
actually cite it, e.g., [16].

We can put forward what we consider a strong, positive
reason, in view of Gap Theory, for believing the Positive As-
sociation Thesis and rejecting Non-Association: evolution,
the engine behind evolutionary economics. In particular, we
refer to the long lost prehistory of the first evolution of cog-
nition. As we have little or no evidence about how cognition
evolved from organisms that could not cognize, our con-
siderations here are necessarily speculative, but we think
our speculation is highly plausible. In particular, we sug-
gest decision making evolved in two phases. First, organ-
isms were driven to act by utilities, by their feelings. These

are “computed” very quickly and easily, so far as we know
subjectively, and do not require memory and learning. As
such, they would have evolved more readily than predictive
abilities. Given their capacity for selecting fit actions, they
therefore would have evolved first. Second, as some organ-
isms began to conquer the problems of decision making in
more complex environments, differential evolution would fa-
vor those who could add (or, multiply) prediction into the
process.? In the first phase of evolution, utilities operating
without probabilities would necessarily be positively associ-
ated with the fitness outcomes of their actions, since, as Di-
amond pointed out, those lacking such an association would
go extinct. Evolution, as is well known, operates on what
is available to it, so the subsequent evolution of prediction
would never have an opportunity to disassociate positive
utility from positive fitness. Once established, Positive Asso-
ciation necessarily carries on, because Gap Theory demands
it. So far from establishing Non-Association, given a plausi-
ble story about evolution, Gap Theory directly implies that
it is false.

3. THE SIMULATED CO-EVOLUTION OF
UTILITY AND PREDICTION

We shall now also demonstrate the invalidity of the ar-
gument from Gap Theory to Non-Association by describing
a simulation we built that directly implements Samuelson
and Swinkels” model of decision making. In our evolution-
ary experiments with their model we had no difficulty finding
environments which supported the evolution of all varieties
of relation between utilities and the fitness of actions, posi-
tive, negative and neutral. Furthermore, in accord with the
two-phase theory of its evolution, we found that when the
evolution of utility precedes that of predictive ability, a posi-
tive association is invariably established and the subsequent
evolution of prediction is powerless to dislodge it.

Our experimental simulation method is not the preferred
tool of economics, which is rather mathematical proof; how-
ever simulation is better suited than proof to resolving many
questions, including this one. Indeed, given the results of our
experiments, that any assocation between fitness and utility
may evolve depending upon the evolutionary circumstances,
there can be no general proof of their relation.

3.1 Simulation Design

We implemented the simulation as a cellular automaton
in Netlogo [17]. We used NetLogo patches as our agents,
reproducing them asexually with mutation to neighboring
patches (see Figure 2). We ran the simulation on a 41 X
41 torus world with 40 randomly generated agents to begin
with. The global simulation parameters were p, p’, q, ¢’ —
that is, the probability for agents that actions A and —A
would lead to reproduction and the initial (unevolved) sub-
jective probabilities that they used to choose which action
to take — and the time steps when utilities and predictive
probabilities were allowed to evolve. p and q were fixed dur-
ing any one simulation run and common to all agents, while

4This idea, in this context, was first stated by Mascaro et al.
[6]. A somewhat more complicated theory of the evolution
of cognition, the Triune Brain hypothesis of MacLean [5],
implies the simpler theory, but we needn’t commit to the
more complicated theory.
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Figure 2: The simulation in action. White patches
are dead. Colored patches are agents, with the base
color representing the utility associated with A (blue
is more than yellow, with green in between) and the
saturation the extent that the utilities cover the pre-
dictive gap (dark is poorly, light is well). This par-
ticular simulation illustrates the positive association
evolved when utilities evolve first and prediction sec-
ond.

p’ and ¢ were allowed to evolve after the starting time pa-

rameter was reached in a simulation run.

Note that Samuelson and Swinkel’s function ¢ is not ex-
plicitly represented in the simulation. We may add this in
future, particularly to test richer, more plausible predictive
functions than they entertain. In these experiments, how-
ever, it would simply be an unneeded complication.

We found that probabilities of reproduction around 0.2
generally lead to a stable population that does not fill the
world. After 300 time steps or so the great majority of sim-
ulations had reached a stable state, as reflected in evolved
utilities and population size, which usually was around one
half of the available patches. For the experiments we report
here, we ran all simulations for 501 time steps. In order to
test the two-phase evolution theory and its variations —
with either utility or predictive accuracy evolving first, sec-
ond, simultaneously or never — we simply set the start of
their evolution to an appropriate time. (In the case of utility,
there is still variability across agents even with no evolution,
since each initial agent received its y from a uniform distri-
bution centered at 0.) The result of running our simulation
invariably illustrates Gap Theory, with agents having util-
ities that close the gap dominating and spreading through
the simulated world, except in runs where the population
simply dies out.

3.1.1 Agents

Each agent has the characteristics:

e A birthday and a lifespan

e An inherited y utility for action A

e p' and ¢/, initially set by parameter
e A record of its fitness (total offspring)

Agents choose action A if p’ — ¢’ +y > 0 and otherwise
choose —A.° The actions are successful at the rates p and ¢
respectively. When an action leads to reproduction (i.e., is
successful), the agent asexually reproduces, with Gaussian
mutation applied to its utility y and predictions of success
p’ and ¢’, assuming evolution for those values is operating.
The offspring is created in a randomly selected neighboring
patch, unless that patch is already occupied, when the ac-
tion is unsuccessful (so p and g are not the actual objective
probabilities of reproduction, which in fact vary according
to the population density).

In the main Netlogo display, as in Figure 2, patches are
white (empty) or colored, with the base color reflecting the
utility y in the range of observed utilities, with yellow repre-
senting low utility, green intermediate and blue high. Satura-
tion reflects the extent to which the predictive gap for A has
been covered by the utilities, with low saturation represent-
ing a large remaining gap and full saturation representing
no gap.

3.1.2  Simulation Globals

Additional parameters are buried in the code as globals,
since we had little need to adjust them once reasonable val-
ues were found. These include the Gaussian variance for mu-
tation, the neighborhood for reproduction (one, giving us the
Moore neighborhood), initial population size, and maximum
lifespan.

3.2 Simulation Experiments

In all the experiments reported here, means and confi-
dence intervals are reported for sets of 30 runs with com-
mon simulation parameters, with variation due only to the
pseudo-random number generator’s seed. Since we wanted
statistics from evolved equilibrium states, if a run resulted
in population extinction, then another run (with a new seed
taken from the clock) replaced it in the set of 30. No other
selection was involved. We used Netlogo’s Behavior Space
to systematically vary the simulation parameters, such as
p,q,p’,q , across sets of runs.

Table 1: Mean correlations (and 95% confidence in-
tervals) between evolved utility and fitness in three
experiments, illustrating negative, neutral and pos-
itive correlations.

(p,q,p’»q’) mean correlation | CI
1] (0.15,0.2,0.16,0.2) | -0.0125 T 0.0063
21 (0.2,0.2,0.2,0.2) -0.000232 + 0.00665
3| (0.2,0.15,0.19,0.14) | 0.01195 + 0.0074

3.2.1 Experiment 1

In our first group of experiments predictive accuracy was
not allowed to evolve, while utilities were always evolving.
Initially, we focused on the correlation between fitness and
utility, measured over all the individuals in a single run.

5 A good alternative is a mixed strategy, which we did. There
was no interesting variation from the results of the determin-
istic decision making we report on here.



We were readily able to generate circumstances which in-
duced positive, negative and neutral correlations, as shown
in Table 1. Unremarkably, when predictions are accurate,
utility and fitness show zero correlation; when predictions
overestimate the fitness value of A, the correlation is neg-
ative; and when predictions underestimate the value of A,
the correlation is positive. In the latter two cases, the mean
correlations are statistically significantly distinct from zero.
This is in complete agreement with Gap Theory, but vio-
lates the Non-Association Thesis. In general, we found that
correlations peaked in magnitude early on in the simulation
and asymptotically approached some low value thereafter,
reflecting the burn-in phase when the evolutionary dynam-
ics are strongest and an equilibrium phase when genetic di-
versity declines (see Figure 3).

These experiments empirically demonstrate the invalidity
of inferring Non-Association from Gap Theory.

0.15
+1o0
mean-correlation

0.1 7

0.05

N

utility-fitness correlation

-0.05 7

-01 T T T T
0 100 200 300 400 500

Time (steps)

Figure 3: Evolutionary trajectory of the correlation
between utility and fitness in one experimental setup
(that of line 3 in Table 1).

3.2.2  Experiment 2

In this set of experiments we allowed the evolution of both
utility and subjective probability. We looked at evolution
when the initial predictions were over- and under-confident
about the fitness of A and when they were accurate, and al-
lowing utility to evolve first, second, or simultaneously with
predictive ability. This allowed us to test directly our two-
phase evolution theory — that an initial evolution of util-
ity followed by an evolution of predictive accuracy would
result in a positive correlation between fitness and utility.
The fitness prediction for = A was always initially accurate
(¢ = ¢' = 0.1). The results in evolved utility for A (i.e., y) are
shown in Table 2. The cases corresponding to our two-phase
evolution theory are in the top third (where predictions are
initially underconfident), and these show statistically signif-
icantly higher evolved utilities for comparable runs where
utility evolves earlier (e.g., comparing line 7 with line 1)
and for comparable runs where the predictions are accurate
or too high (e.g., comparing line 7 with lines 16 and 25).
The same data are shown as a histogram in Figure 4, but
clustered according to the time when evolution of predic-
tion and utility was allowed to begin. The evolved utility is
clearly greater when utility evolves first as well as when the
initial prediction underestimates the fitness of A (the red
bars).

Table 2: Mean evolved utilities with 95% confidence
intervals for Experiment 2. Results are listed in
groups of 9 sets of 30 runs each. The top set has
initial under-prediction of the fitness of A; the next
starts with accurate prediction; the third set initially

over-predicts fitness.

prob-start | utility-start | mean utility | CI
110 0 0.630 £ 0.069
2 |0 150 0.402 + 0.038
3 10 520 0.229 + 0.021
4 | 150 0 0.838 + 0.043
5 | 150 150 0.561 + 0.033
6 | 150 520 0.266 £ 0.018
7 | 520 0 0.876 + 0.036
8 | 520 150 0.705 + 0.023
9 | 520 520 0.231 + 0.016
100 0 0.583 + 0.051
110 150 0.379 £ 0.050
12 |0 520 0.188 + 0.028
13 | 150 0 0.735 + 0.040
14 | 150 150 0.519 £ 0.030
15 | 150 520 0.225 + 0.022
16 | 520 0 0.737 £ 0.031
17 | 520 150 0.622 + 0.026
18 | 520 520 0.186 + 0.021
1910 0 0.524 + 0.052
20 |0 150 0.363 + 0.033
2110 520 0.159 £ 0.022
22 | 150 0 0.660 + 0.034
23 | 150 150 0.462 + 0.037
24 | 150 520 0.177 + 0.026
25 | 520 0 0.721 + 0.033
26 | 520 150 0.527 £ 0.027
27 | 520 520 0.138 £ 0.020

4. CONCLUSION

We have argued and, with our simulation, successfully
demonstrated that Gap Theory does not imply any partic-
ular association between evolved utilities and fitness. Not
implying a particular association is not the same as im-
plying no association, of course. Those claiming otherwise,
partly for the shock value of asserting the Non-Association
Thesis, have made elementary mistakes, apparently uninten-
tionally conflating Gap Theory with Non-Association and so
not noticing the inferential gap in their position. We have,
on the other hand, given some modest reason to think that
there should be a positive association between utility and
fitness and, somewhat unusually for cognitive psychology,
confirmed common intuition. Our simulation supports our
claims.

This kind of work in the simulated evolution of cognition
has not been done before, but potentially has a large role to
play in advancing our understanding of cognition. Ongoing
work in evolutionary psychology, and its application to eco-
nomics and politics (as in the work of McDermott et al. [7]
and Rubin and Capra [12]), shows that the utilities revealed
in many human behaviors have deep origins in the early evo-
lution of homo sapiens. We would argue that these origins
are even deeper, lying in the early evolution of animals in
general. Richer simulations, in particular simulations which
allow for a more detailed representation of the co-evolution
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Figure 4: Histogram of the data in Table 2, with
experiments reordered according to the evolution
start times of prediction and utility: the first third
are those with prediction evolving first (initial evo-
lution, with varying times of onset for utility evo-
lution); the second third with prediction evolution
delayed; the third with prediction not evolving.

of utility and decision making, can support, or refute, claims
such as ours. We could, and, we hope, will, learn a lot about
the evolution of cognition by studying it in silico.
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